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ABSTRACT: Today, the study of flow and heat transfer in non-circular ducts are of increasing importance 
in various industries and applications such as microfluidics, where lithographic methods typically produce 
channels of square or triangular cross-section. Also, heat transfer in non-circular ducts is important in designing 
the compact heat exchangers to enhance the heat transfer. In the current study, an exact analytical solution for 
the convective heat transfer in conduits with equilateral triangle cross-section is presented for the first time. 
The effect of viscous dissipation on heat transfer and temperature distribution through the duct is investigated 
in detail. This effect is of great importance especially in flow of high viscous fluids in micro-channels. In order 
to study the effect of viscous dissipation in both cooling and heating cases, the Brinkman number is employed. 
The exact solution is found by calculating the particular solution which satisfies the thermal boundary 
conditions. Based on the finite expansion method, an exact analytical solution for temperature distribution 
and a correlation for dimensionless Nusselt number is obtained as functions of the Brinkman number. The 
maximum temperature and Nusselt number at the centroid of the conduit for the specific case of Brinkman 
number equal to zero is calculated equal to 5/9 and 28/9, respectively. The proposed method of solution could 
be used to find the exact solution for similar problems such as analysis the heat convection in non-circular 
geometries.
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1- Introduction
There has been an increasing interest allocated to the heat 
transfer of visco-laminar flows in the conduit due to its vast 
range of applications in industry and bioengineering fields. 
Taking the advantages of this valuable type of investigations in 
industry, it is possible to design high performance equipment 
in engineering, industry fields and bio related devices. 
Today, the convective heat transfer in non–circular ducts is 
of increasing importance in microfluidics, where lithographic 
methods typically produce channels of rectangular or 
triangular cross-section. These channels are also extensively 
used in equipment such as biological kits, (such as the kits 
for extraction the DeoxyriboNucleic Acid (DNA), detection 
of cancers cells and bacteria, blood sample preparation and 
glucose monitoring), fuel cells and cooling systems for 
small spaces. Generally, in this type of investigation, Nusslet 
number and friction factor are two of the most important 
factors that we would like to obtain, control and have 
domination over them for best designing and manufacturing 
purposes in heat exchanger related analysis. A large number 
of investigations in this field are carried out to analyze the 
possible effects of different parameters playing a role in these 
parameters. An interesting category of investigations are those 
who focused on the effect of shape and geometry of cross 
sections on Nusselt number. Shah [1] in his comprehensive 
study investigated the effect of cross section of ducts on force 
convective heat transfer with various shape of cross-section 
like isosceles triangular, rounded corner equilateral triangular, 
sine, rhombic, and trapezoidal. He revealed that making 

rounded the corners of the pipe cross-section can change and 
enhance the heat transfer rate of channel. In following, Shah 
and London [2], extend previous investigation to analyze the 
effect of centrifugal force on heat transfer of internal flow. 
They carried out a numerical investigation on the laminar 
fully developed forced convective heat transfer in straight and 
curved ducts for both constant heat flux and wall temperature 
boundary conditions using finite difference method to show 
using curved pipes can significantly increases the coefficient 
of heat transfer in internal flows. Recently, Erdoğan and 
Imrakin [3] in their interesting work analyzed the heat transfer 
of different cross sections. The values of the Nusselt numbers 
obtained are about, 3.5441771 for a duct of square cross-
section; 48 /11 for a circular pipe, about 4.088184147 for a 
duct of semicircular cross-section and  140/17 for a parallel 
plate duct. More recently, Shahmardan et al. [4,5] employed 
analytical methods to obtain exact analytical solutions to the 
triangular ducts scenario. They assumed the iso-flux situation 
around the boundary and obtained the value of Nusselt 
number in this regime as 28/9. This value of the Nusselt 
number shows the effect of duct shape on heat transfer. The 
heat transfer in ducts of rectangular, equilateral triangular, 
right-angled isosceles triangular, and semicircular cross-
sections have been studied by Marco and Han [6]. They used 
an analogy theory and gave the conditions under which the 
solution is permissible. By this analogy, first the temperature 
distribution is obtained and then the velocity distribution is 
found. Rajagopala and Sadegh [7] using boundary integral 
method numerically investigated on the fully developed 
forced convection heat transfer of vide ranges of conduit 
cross section including circular, elliptical, rectangular, Corresponding author, E-mail: mnorouzi@shahroodut.ac.ir
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and triangular. Lakshminarayanan and Haji-Sheikh [8] 
numerically analyzed  temperature  development  in  ducts 
with different triangular cross-sections using Galerkin 
finite element method. Zhang et al. [9] using an analytical/
numerical solution analyzed the convective heat transfer in 
the thermal entrance and fully developed flow region of three 
different cross sections of square, rectangular and equilateral 
triangular conduits with isothermal scenario. Furthermore, 
Zhang [10] studied numerically the hydrodynamic fully 
developed flow and thermally devolving heat convection in 
plate-fin isosceles triangular ducts under uniform temperature 
condition. There, different Nusselt numbers related to both 
of developing and fully developed regions for various apex 
angles and fin conductance parameters are obtained.
Zhang and Chen [11] studied the fluid flow and convective 
heat transfer in a cross-corrugated triangular duct under a 
uniform heat flux at walls employing a numerical method 
and corroborated their result with experimental parts. They 
extended their work and presented correlations for estimation 
of the pressure drop and the mean Nusselt number. Ray and 
Misra [12] numerically investigated the effect of making 
rounded the corners of the ducts of square and equilateral 
triangular cross sections on both pressure drop and heat 
transfer characteristics of laminar fully-developed flow. 
There, they employed a dimensionless radius of curvature 
parameter to study the effect of curvature on pressure drop 
coefficient and Nusselt number. The similar numerical studies 
were extended this scenario to analyze the forced convection 
in a porous medium [13], or to study the effect of viscous 
dissipation on heat transfer [14] and modeling the heat 
convection of turbulent flow in triangular straight ducts [15]. 
In this among some of the researchers also suggested taking 
the advantages of rheological properties of viscoelastic fluids 
we can have domination over these parameters in heat and 
flow analysis [16-19].
According to the literature, most of the studies in the field 
of flow and heat transfer in triangular ducts are restricted to 
the numerical investigations which did not consider the effect 
of viscous dissipation and there are not a lot of analytical 
techniques which can be attributed to the complex form of 
geometry. To the best knowledge of authors, there is not any 
exact analytical solution available about the heat convection 
in straight triangular ducts in which the effect of flow 
dissipation is considered. In this paper, an exact analytical 
solution for forced convective heat transfer considering flow 
dissipation effect in straight pipes with equilateral triangle 
cross section is presented for the first time. The schematic 
shape of problem is shown in Fig. 1. An exact analytical 
solution is obtained based on the finite series expansion 
method for steady convective heat transfer under the constant 
heat flux at walls considering the effect of flow dissipation in 
this geometry. The closed form of dimensionless temperature 
distribution in Cartesian coordinate system and Nusselt 
number is derived analytically.

2- Governing Equations
The governing equation including conservative mass, 
momentum and energy equations in a duct with equilateral 
triangle cross section concerning with the incompressible 
fluid flow and heat transfer is presented as following:
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where V is the velocity vector, ρ is the density, P is the static 
pressure, t is the time, μ is the viscosity, T is the temperature 
of the fluid flow and Φ is flow dissipation portion of energy 
equation which is defined as:
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It is convenient to employ the non-dimensional style of 
governing equation in this type of investigation. The non–
dimensional parameters which will be used in the current 
study can be expressed as following:
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where α is the thermal diffusivity coefficient, u is the main 
flow velocity, y and z are coordinates in Cartesian coordinate 
system, and a and h are the side and the height of equilateral 
triangular cross section, respectively (see Fig. 1). In addition, 
dh is the hydraulic diameter, ub is the bulk velocity, and Tm is the 
mean temperature and Br is Brinkman number of fluid flow. 
Area, hydraulic radius, bulk velocity and mean temperature 
corresponding to the equilateral triangular surface parameters 
are defined as following:
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Fig. 1. The geometry of duct in current study
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Using Eqs. (3) and (4a), we can write:
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where A and P are the cross-sectional area and perimeter of 
the cross section, respectively. In order to obtain a correlation 
between variation of mean temperature in axial direction of 
conduit and flow dissipation, a thermal energy balance on a 
differential control volume in the axial direction is written as 
[20]:
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The fully developed thermal condition for convective heat 
transfer in a closed channel is generally defined as:
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Using Eqs. (6) and (7), and considering the constant heat flux 
at walls (q"=h(Tw-Tm)), we have:
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Assuming a constant viscosity for the fluid and taking the 
advantages of Eqs. (3) and (8), substituting them into the 
Eq. (1c), after making some re-arrangements, the following 
dimensionless form of the heat transfer equation is obtained. 
It should be noted that since the velocity distribution of fully 
developed laminar flow is rectilinear, the transverse velocity 
components should be set to zero, so we have:
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where C is a constant and is defined as:
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Using the non-dimensional parameters presented in Eq. (3), 
Eq. (9) is reduced into:
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Main flow velocity and flow rate of rectilinear flow in a duct 
with equilateral triangle cross section are [21]:
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Therefore, the bulk velocity (ub) corresponding to this 
geometry can be obtained as:
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Based on the Eq. (3), the dimensionless form of flow 
distribution can be expressed as:
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Substituting dimensionless velocity (Eq. (14)) into the Eq. 
(10), the C constant is obtained as following:
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Using the obtained value of C constant, the conservative 
energy equation (Eq. (11)) for a fully developed flow in a 
straight duct with equilateral triangular cross section is 
obtained as:
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where A and B are defined to simplify the equation as 
following:
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3- Exact Solution and Results
Considering the non-homogenous style of non-dimensional 
energy equation, it can be easily confirmed that temperature 
solution is consisted of two parts; a general solution and a 
particular solution as:
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Noting the fact that both the boundary condition and 
governing equation for general solution are homogenous the 
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general solution of temperature distribution is equal to zero. 
Obtaining the particular solution of this type of investigation 
is not generally a simple procedure. Noting the Non-
homogenous part of energy equation it can be deduced that in 
a fully developed rectilinear flow the temperature distribution 
should be in form of finite expansion series. Based on this 
equation (Eq. (11)) and a simple applying Laplacian operator 
on temperature distribution, it can be easily noted that the 
order of results (which is equal with order of velocity) is 
decreased two times. Here, using the finite expansion method, 
a five order series with 8 unknown constants is considered to 
be solution of temperature distribution as:
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Substituting the above equation (Eq. (20)) into Eq. (11), one 
can obtain the following equation:
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The terms with order less than three is not considered in Eq. 
(21) because by applying the Laplacian operator on these 
terms, it seems that there are not any same order terms in the 
result of operation with the terms of the right hand side of Eq. 
(11). Therefore, the coefficients of these terms are obtained 
equal to zero. In order to find the non-zero coefficients (Ci, 
i=1, 2, … and 8), the Eq. (21) should be substitute in Eq. (11):
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By considering the same order terms to be equal in both sides 
of Eqs. (22) and (23), we have:
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By solving the above set of equation, 8 unknown coefficients 
are achieved as:
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In order to obtain the final solution of temperature distribution 
in a equilateral triangular conduit, it is needed to plug the 
above obtained constants (Eq. (24)) into Eq. (21) to find the 
temperature distribution. The non-dimensional temperature 
profile corresponding to the scenario is obtained as following:
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It can be easily proved that Eq. (25) can satisfy the boundary 
conditions at walls (at walls: T=Tw or T=0):
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The convection coefficient can be found using the following 
relation:
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Using the above equation and the velocity distribution for 
fully developed laminar flow, the Nusselt number can be 
easily calculated employing the following equation:
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Using the achieved temperature distribution to obtain mean 
temperature, the Nusselt number can be calculated as a 
function of Brinkman dimensionless number as following:
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In the special case of Br=0 (scenario with no flow dissipation) 
the above equation is reduced to:
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The above value is the Nusselt number of fully developed 
flow and heat transfer in straight pipes with equilateral 
triangular cross section under the constant heat flux at walls 
which is reported in previous numerical studies [4,5].
As the first benchmark comparison, the fully developed flow 
and heat transfer through a duct with isosceles triangular 
cross-section at Br=0 has been solved and compared with the 
results of Chen et al. [22]. Fig. 2a shows the dimensionless 
temperature distribution along the symmetry axis. As it can 
be seen in this figure, there is a good consistency between our 
exact solution and the numerical results of Chen et al. [22]. 
To validate the presented exact solution for Br≠0 , numerical 
simulations were conducted at Br=2, -2 . As shown in Fig. 
2b, it can be observed that the numerical results are in a good 
agreement with the presented exact solution.
Fig. 3 shows the contour of dimensionless temperature 
distribution without flow dissipation in a cross section of 
triangular duct. Here, the isothermal lines are appeared as the 
round corner equilateral triangles. As it is illustrated in the 
cases that heat flux is applied to the boundary, the highest 
and lowest temperature of conduit are related to the wall and 
centroid of triangular pipe. As it is well-known Brinkman 
dimensionless number presents the level of heat generation 
of flow and presented the effect of viscous dissipation. The 
positive value of Br is representing heating scenarios, while 
the negative value is representing cooling situations. For 
better investigation over the effect of viscous dissipation on 
both heating and cooling regimes, Figs. 3 and 4, respectively, 
reveal the temperature distribution corresponding to these 
cases. Assuming the wall duct is subjected to the constant 
heat flux and the fluid is hydrodynamic and thermally 
developed, it can be expected that in heating cases, the wall 
should obtains the highest value of temperature while in 
cooling situation, it has the lowest value. As shown in Fig. 3, 
when wall heating is applied, increasing in the value of the Br 
number for a constant value of heat flux, increase the value 
of dissipation of fluid. Considering the fact that generally 
velocity gradient and consequently flow dissipation around 
the wall are large, temperature of this region is increased and 
obtains a value around the value of wall. Although dissipation 

increases the bulk temperature of the fluid as a heat source, 
less amount of heat is transferred to the fluid. Therefore, the 
temperature difference between the wall and the core region 
increase as it is revealed in Fig. 3. The temperature contours 
for cooling scenario is shown in Fig. 4. In this case, the value 
of the dissipation is increased in following of a decrement in 
the value of Br number. In fact, the viscous dissipation and 
the constant heat flux (which is imposed to the wall) have 
opposite effects. So, the wall cooling will overcome the effect 
of heat generated internally by viscous dissipation process as 
shown in Fig. 4. 
Fig. 5 is representing the mean temperature of fluid passing 
through an equilateral triangular conduit. As it could easily 
expected the mean temperature of the fluid is increased in 
following of an increment in Brinkman Number. The filled 
square in this figure is related to the critical Brinkman number 
(Brcritical=-0.275) where the mean temperature of fluid is equal 
to zero.
Figs. 6 and 7 show the variation of dimensionless temperature 
at vertical axis of the cross section (at y=0) and horizontal axis 
of centroid (at z=2h/3=1), respectively, with different positive 
and negative heating effects. According to these Figures, the 
minimum and maximum values of this temperature is related 
to the centroid of the triangle (y=0 & z=2h/3=1). In special 
case of Brinkman number equal to zero, maximum absolute 
value of dimensionless temperature is calculated as:
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(a)

(b)
Fig. 2. Comparison of presented exact solution for 

dimensionless temperature distribution with (a) numerical 
results of Chen et al. [22] at Br=0 and (b) numerical simulations 

at Br=2, -2
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Br=-0.5 Br=-1 Br=-5

Br=-0.01 Br=-0.2 Br=-0.25

Br=-0.275 Br=-0.3 Br=-0.35

Fig. 3. Dimensionless contours of temperature for flow in triangular ducts (Cooling).

Br=0.01 Br=0.2 Br=0.5

Br=1 Br=3 Br=5
Fig. 4. Dimensionless contours of temperature for flow in triangular ducts (Heating).
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Variations of these critical points are plotted in Fig. 8. 
Interesting results are related to the cases with critical values 
around Brcritical=-0.275 in which the maximum value of 
temperature has a small value around zero and is not related 
to the centroid of cross section and shift away toward walls. 
The maximum temperature in this situation is equal to zero 
at the centroid of pipe. As it is presented previously in Fig. 
5 in this situation, the meant value of fluid temperature is 
also obtained as zero. In this situation, as it can be concluded 
from Eq. (29), the value of Nusselt number tends to infinity. 
Variation of Nusselt number with Brinkman number is 
presented in Fig. 9. It can be easily observed that as absolute 
value of Brinkman number tends to infinity, Nusselt number 
tends to zero (this result can be also obtained from Eq. (29)).  
In special case of Brinkman number equal to -11/40, the 
Nusselt number is shown to tend to infinity. In lower values, 
the Nusselt number obtains a negative value while in higher 
values Nusselt number is positive.

4- Conclusions
In this study exact analytical solutions are presented for the 
temperature distribution and Nusselt number as a function of 
Brinkman number for the convective heat transfer with flow 
dissipation of viscous fluids passing through the rectilinear 
triangular conduits. Presented analytical solution is obtained 
taking advantages of finite series expansion method based 
on the finding the possible orders of solution. In special 
case of Brinkman number equal to zero (flow dissipation 
is neglected), the Nusselt number is obtained as 28/9 and 
maximum temperature which is concerned with the centroid 
of cross section is calculated as 5/9. A critical Brinkman 
number in this scenario is calculated as -0.275 where Nusslet 
number tends to infinity and mean temperature is equal to 
zero. The solution shows that in following of an increment 
in Brinkman number, the mean temperature is increased. 
The results of present study could be useful in heat transfer 
analysis the microfluidics and compact heat exchangers. The 
authors believe that the proposed method of solution could 
be used to find the exact solution for similar problems such 
as analysis the heat convection in non-equilateral geometry, 
finding the solution for other thermal boundary conditions 
and modeling the effect of heat dissipation in triangular ducts.
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