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Reduced Order Model for Boundary Instigation of Burgers Equation of Turbulence 
Using Direct and Indirect Control Approaches
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ABSTRACT: In this paper, a reduced order model is reconstructed for boundary control and 
excitation of the unsteady viscous Burgers equation. First, the standard reduced order proper orthogonal 
decomposition model, which has been extracted from the governing equations without control inputs, 
was evaluated and illustrated the satisfactory results in short time period. Two approaches are used to 
imply the effects of boundaries excitations and the related control routines. In the first, a source term 
was added to the governing equation of the reduced order dynamical system and was contributed as 
an expansion of the proper orthogonal decomposition modes without control input. For removing the 
inhomogeneities on the boundaries, the boundaries values are subtracted from all of the snapshots with 
an appropriate control input. The other approach is based on the rewriting of the diffusion term as 
an expanded form which contains the effect of boundaries values explicitly. In both approaches, the 
obtained reduced order models will contain two parts, the effect of system states and the influence of 
boundaries control functions. The results obtained from the reduced order model without the control 
inputs demonstrate a good agreement to the benchmark direct numerical simulations data and prove the 
high accuracy of the model.
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1- Introduction
One of the essential concepts in the field of complex systems 
is a complete understanding of the turbulent phenomenon. 
An excellent choice for a better understanding of the 
disordered flow phenomena which is occurred inevitably 
at high Reynolds numbers is Direct Numerical Simulations 
(DNS). However, the present theory of turbulence has still 
some problems for predicting the important features of some 
phenomena like turbulent mixing, turbulent convection, and 
turbulent combustion. It is due to the reason that already 
the governing equations for the simplest flows such as 
Newtonian incompressible fluids, have to take into account 
nonlinear as well as nonlocal properties. Especially, in the 
linear momentum conservation equation, the nonlinearity 
arises from the convective acceleration and the pressure 
gradient terms, whereas nonlocality properties come from the 
pressure term. Therefore, Burgers equation has three primary 
terms including the transient, the convective and the diffusion 
terms. Each of these terms has a specific behavior according 
to the mathematical specifications of Partial Differential 
Equation’s (PDE). Diffusion term creates the elliptic behavior 
of the evolution equation such as Burgers equation. Elliptic 
PDEs have an important property which is influenced from 
the boundaries values. Also, the viscous property of the flow 
field is represented by this term. It is clear when the flow is 
turbulent; the effects of viscosity are amplified in the whole 
of the flow field. Thus, the control of boundaries’ excitations 
results in the overall control of the flow field’s behavior. 
Control approaches in engineering and science have 
attracted considerable interest due to their applications. The 
essence of control is the ability to utilize real-time sensing, 

actuation, to manipulate the time-dependent response of a 
system subject to disturbances and the time variations in the 
operating regime. Control routine involves controlling a flow 
field using passive or active devices in order to bring on the 
desired changes in the behavior of the flow. In 1939, J.M. 
Burgers [1] proposed a simplified form of the Navier-Stokes 
(NS) equation, which is called Burgers equation, by just 
dropping the pressure term. This equation can be investigated 
as a one-dimensional problem. There is one spatial and one 
temporal coordinate. Breuer and Petruccione [2] introduced 
a mesoscopic approach explained by means of the one-
dimensional Burgers model of turbulence. They evaluated 
correlation functions and energy spectra from the appropriate 
ensemble averages to demonstrate the energy dissipation 
and energy cascade. The Burgers equation has frequently 
been used as a model where the dissipation of kinetic energy 
remains finite in the limit of vanishing viscosity (i.e., the 
dissipative anomaly). This allows singling out artifacts arising 
from the manipulation that ignore shock waves [3]. Bec and 
Konstantin [4] reviewed different methods to study about the 
solution of turbulence Burgers equation. Bouchaud et al. [5] 
proposed a simple method to compute the velocity difference 
in a forced Burgers equation. Honken et al. [6] studied 
about modeling of turbulence using functional integration 
of Burgers equation. They investigated the feasibility of 
modelling turbulence via numeric functional integration 
by transforming the Burgers equation into a functional 
integral. Camilo Bayona et al. [7] proposed a numerical 
approximation for the one-dimensional Burgers equation by 
means of the Orthogonal Sub-Grid Scales -Variational Multi-
Scale (OSGS-VMS) method. Öziş et al. [8] studied about a 
solution of Burgers equation using the Lie group method. 
In this method, by similarity transformations, the equation Corresponding author, E-mail: moayyedi@qom.ac.ir
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is reduced to Ordinary Differential Equations (ODE) whose 
general solutions are written in terms of the error function. 
Rudenko et al. [9] presented a one dimensional equation 
that generalizes the Burgers equation in theory of waves 
and turbulence models. Burns and Kang [10] studied about 
control of Burgers equation based on the strategy to minimize 
a certain weighted energy functional. They used a numerical 
scheme for computing the feedback gain functional and 
employed “α-shifted” linear feedback control laws to obtain 
a desired degree of stability, on a certain energy space, for 
the closed-loop nonlinear system. Da Prato and Debussche 
[11] considered a control problem for a stochastic Burgers 
equation. This problem is motivated by a model from the 
control of turbulence. Choi et al. [12] developed a procedure 
to cast the problem of controlling turbulence based on the 
optimal control theory through the formalism and language of 
control theory. Baker et al. [13] used a method to synthesize 
nonlinear finite-dimensional output feedback controllers 
for the Burgers equation and the two-dimensional channel 
incompressible flow.
Design of reduced-order controllers is an interesting aspect 
of the recent development of computational engineering. 
The reduced order Proper Orthogonal Decomposition (POD) 
models have prepared new foundations in computational 
simulations of engineering problems. These models that 
obtained from the conservation laws cause an increase in 
the computational speed. Also, the POD based Reduced 
Order Models (ROMs) have prepared the appropriate base 
for coupling different dynamical systems and have helped 
researches and engineers to test and validate their new ideas 
and theories. 
Different efforts have been performed to construct low order 
control models. Allan [14] used a reduced order model for 
linearized NS equation for optimal feedback control and 
applied model on the entire flow field. The balanced POD, 
which uses Non-linear Galerkin definition, is one of the 
methods for improving the prediction of a dynamical system. 
This method is a good choice for reconstruction of reduced 
order control models due to the ability of the method to 
control both the inputs and the related outputs [15]. Ravindran 
[16] used POD low order model for optimal control of fluid 
flow past a backward step. The ability of the low dimensional 
dynamical system in the flow control applications have been 
shown on a recirculation control problem using blowing on 
the channel boundaries. Atwell [17] proposed POD based 
reduced order model for control of Burgers equation with 
periodic boundary conditions and Non-linear observers. 
This controller is designed using the MinMax approach. 
A reduced order POD model has been used to control the 
viscous Burgers equation containing the periodic boundary 
conditions with non-linear observers. The model is developed 
based on two parts, the homogeneous model and the non-
linear inhomogeneous part due to the effects of boundaries 
[18].
In the sequel, the principal concepts of the POD are presented. 
In the next section, the mathematical formulation of the 
controlled form of Burgers equation is presented. Then, the 
Galerkin projection of governing equation and the related 
low order dynamical systems have been presented. Finally, 
the discretization of the ROM equation, the order reduction 
manner and the results are discussed in the next sections.

2- Proper Orthogonal Decomposition
The POD Reduced-order modeling begins by finding 
the empirical eigenfunctions using the Karhunen-Loève 
decomposition. Then the flow variables are approximated 
using the expansions of these eigenmodes. The governing 
equations are projected into the eigenfunctions space to 
obtain the sets of equations for the coefficients of the 
expansions that can be solved to predict the behavior of the 
flow variables in space and time. The POD is remarkable 
in the selection of bases functions that are optimal and not 
necessarily appropriate. The POD was introduced to the 
turbulence community by Lumley in 1967. Before that, it 
was already known in the statistics as the Karhunen-Loève 
expansion. Lumley proposed that a coherent structure can 
be defined with functions of the spatial variables that have 
maximum energy content. That is, coherent structures are 
linear combinations of ϕ's, which maximize the following 
expression [19]:
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where (ϕ , u) is the inner product of the basis vector ϕ with 
the field, u Note <.> is the time-averaging operation. It can be 
shown that the POD basis vectors are eigenfunctions of the 
Kernel K given by [20]:( )
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where u' denotes the Hermitian of u. This equation is 
converted to the Fredholm’s second kind integral equation 
and its discretization leads to an eigenvalues problem. In this 
work, the Singular Value Decomposition (SVD) method has 
been used to solve this eigenvalues problem [21].

3- Governing Equation
Burgers equation is a non-linear PDE which has various 
applications such as in the fluid mechanics, acoustics and gas 
dynamics. This equation is a simplified form of the Navier-
Stokes equation by just dropping the pressure term and 
therefore is considered as a convection-diffusion equation. 
The Burgers equation is nonlinear and one expects to predict 
phenomena similar to turbulence. However, as it has been 
shown by Hopf [22] and Cole [23], the homogeneous Burgers 
equation does not contain the most important property 
attributed to turbulence. This equation in non-dimensional 
form is as:
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In the domain, Ω with time period [0, T] . The Reynolds 
number is defined as Re=(u×L)/v, and the boundary 
conditions are as:
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Also, the Burgers equation is very similar to the heat equation. 
The first term is the transient behavior of the desired quantity, 
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the second term is similar to convection heat transfer and the 
right-hand side term represents the diffusion. Thus, all of 
these descriptions and properties demonstrate the importance 
of Burgers equation in the fluid mechanics and the non-linear 
dynamical systems.

4- Galerkin Projection and POD Surrogate Reduced 
Order Control Model
Any variable (ensemble members) can be rewritten as the 
summation of mean and the fluctuation parts, as:
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The first part is a time-averaged value of snapshots while the 
second part can be written using an expansion of the POD 
eigenfunctions, as [16]:
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In the above equation, N is the number of modes, ai(t) and   
ϕi(x) are the modal coefficients (temporal modes) and the 
related spatial (POD) modes respectively. Now, If the Burgers 
equation (Eq. (3)) are expanded using Eqs. (5) and (6) and 
based on the assumption that the time derivative of the mean 
part is zero, new relations are obtained. Next, these equations 
are projected along the POD modes and a system of ODE’s is 
obtained, which is called dynamical system. 
To construct an appropriate surrogate model for boundaries 
control and excitations of Burgers equation, two approaches 
have been performed. In the first, a source term was added to 
the governing equation of representative dynamical system. 
This term is contributed as an expansion of POD modes 
without control inputs or by specified control function. 
For removing the inhomogeneities on the boundaries, their 
related values are subtracted from all of the snapshots with a 
determined control input. 
The other approach is based on rewriting the diffusion term 
(right-hand side of Eq. (3)) as an expanded form which 
contains the effect of boundaries values explicitly. In both 
approaches, the reduced order dynamical system contains 
two parts, the effect of system states and the influence of 
boundaries control functions.

4- 1- Imposing control function method
The POD eigenfunctions only present the information 
given by the ensemble of data and thus the snapshots of 
the uncontrolled system cannot be used for the controlled 
system. To obtain the snapshots for the controlled system, an 
ensemble contains members with a specified control input 
has been taken. The inhomogeneities on the boundary have 
been removed by subtracting an appropriate function from 
each snapshot before calculation of the POD basis. A good 
choice to generate this ensemble is to take the field solution 
with a fixed value of boundary control function. Then the 
modified snapshot is now
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Let as rewritten the velocity vector as the summation of mean, 
the control influence, and the fluctuation parts, as:
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The first part is a time-averaged value of snapshots ensemble 
members. The second (control enforces) and the third parts 
can be written using the expansion of the POD eigenfunctions, 
as:
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and,
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In the above equations, ai(t) and ϕi(x) are the modal coefficients 
and the spatial modes of the considered field without the 
influence of boundary control. It means that ϕi satisfies zero 
(homogeneous) boundary conditions on each controlled 
boundaries. In Eq. (10), bi(t) are the modal coefficients 
of the boundary influence part of the snapshots. As to be 
noted before, the boundary control part was represented as 
a function of spatial modes without control. Therefore, the 
problem states are only POD eigenfunctions without the 
boundary control excitation function. If the viscous Burgers 
equation (Eq. (3)) is expanded using Eqs. (5) and (6) and the 
outcome equations are projected along the POD modes, the 
related dynamical system is obtained, as:
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The first part in the above equation is the effects of problem 
state without control while the second part is boundary 
excitation effects. The first item of the right-hand side of Eq. 
(12) is as:
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(13)

Then, Eq. (11) will be solved to compute the time variations 
of the modal coefficients which are used for reconstruction 
of the field under controlling the boundaries or neutral 
conditions.

4- 2- Direct boundary excitation treating method
The second approach to imposing the boundary influence 
is based on the direct representation of their effects in the 
governing equation of surrogate reduced order model. This 
method is based on the decomposition of the viscous term in 
some parts which contain effects of boundaries and the values 
of the interior domain. If the viscous Burgers equation (Eq. 
(3)) is projected along the POD eigendirections space and 

→

→
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based on the assumption that time derivative of the mean part 
is zero, the following relation is obtained:
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(14)

The integral form of one dimensional model along the spatial 
direction is as:( ) ( )( ) ( )
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The diffusion part of the above equation is expanded and the 
outcome model will be:
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The outcome dynamical system is as:
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The first part in the above equation is the effects of problem 
state without control while the second part is boundary 
excitation effects. The right-hand side of Eq. (17) is defined 
as:
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Similar to the previous section, Eq. (17) should be solved 
to compute the time variations of modal coefficients for 
reconstruction of the field under the effects of boundary 
instigation or the neutral conditions.

5- Discretization of ROM Equation and Calculation of 
Model Coefficients
The derivatives associated with the reduced order model 
coefficients were computed using a finite difference method 
with appropriate accuracy. An explicit, fourth-order-accurate, 
four-stage Runge-Kutta scheme was used for time integration 
of the ROM equations. The time-step studying shows that 
if the step size is equal to DNS snapshots increment, the 
behavior of the surrogate model will be adequately stable.

5- 1- Spatial discretization
The spatial derivatives of the convective (non-linear) term of 
the dynamical system’s equation have been discretized using 
a first order upwind method, as:
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For spatial discretization of the diffusion part of linear 
coefficients (first order and second order derivatives) in Eqs. 
(11) and (17) used a second order central differencing method. 
This formulation for interior nodes of the computational 
domain is as follows:
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For the points on the boundaries a forward or backward 
second order differential formula is used as follows:
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6- Model Order Reduction Criterion
Normally, when the number of modes is increased, the 
reconstruction is performed with better accuracy. It is required 
to use the optimal number of modes for data reconstruction. 
This is equivalent to capturing the highest level of energy 
and the least number of modes for model construction (such 
as Fig. 3). In this manner, a fraction number is defined for 
automatic selection of modes as follow:
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where κ is about 99.9% and Nr is the optimum number of 
modes for reduced order model construction [20].

7- Direct Numerical Simulation
The snapshots for this test case have been generated using 
a one dimensional viscous Burgers equation solver based 
on a high order finite difference method. For clarifying the 
accuracy of direct simulation code a sample problem has 
been solved with this solver and obtained results have been 
compared with reference data. For this purpose consider a 
stationary sinusoidal wave in the beginning as:
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With periodic boundary conditions:
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The Burgers equation has been numerically solved for 
Reynolds number of 100 and the obtained results have 
been stored at times equal to 0.2, 0.3 and 0.4. Fig. 1 shows 
a comparison between the results of direct simulation code 
and benchmark data at these times. It is clear that the direct 
simulation code has good accuracy and agreement with 
reference data.

8- Results and Discussion
The results obtained for an unsteady incompressible 
viscous flow governed by Burgers equation at Re = 100, 
are demonstrated in this section. For validation of low-
dimensional POD model, the related results, which are 
obtained without control enforces, have been compared with 
the related DNS data.

8- 1- Reduced order model of Burgers equation based on the 
indirect boundary excitation
In this section direct numerical simulation and the reduced 
order modeling of Burgers equation under the following 
conditions is performed:
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And the following boundary conditions for controlled 
boundaries:
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An ensemble with 100 members in different time steps with 
equal time increments and in a specific time span has been 
considered as an input data. Fig. 2 shows the distribution 
of four members of the snapshots ensemble of the field at 
1st, 30th, 50th, and 80th time steps while Fig. 3 illustrates the 
distribution of four members of boundary actuation snapshots 
ensemble. After the solution of the eigenvalues problem, the 
POD modes are calculated. In Fig. 4, distribution of the four 
strongest modes of the field without subtracting the boundary 
Non-homogeneities is shown. 
Fig. 5 shows the eigenvalues distribution versus the mode 
number and the energy spectrum of the first forty and nineteen 
POD modes respectively. Distribution of eigenvalues 
illustrates that their amplitude converges to a very small value 
after 12th mode. It is to be noted, the criterion for choosing the 
number of required modes to construct ROM can be verified 
from these graphs. Based on this criterion, eight modes have 
been used for the construction of the surrogate reduced order 
model which can capture 99.9% of the field’s kinetic energy.

8- 1- 1- Short time period reduced order modeling without 
boundary excitation
By the method presented in the previous sections, the surrogate 
reduced order model is constructed using eight modes. Then, 
the time marching procedure is performed using an initial 
condition which is equal to the values of modal coefficients 
(obtained from the snapshots projection) in the first time step. 
In Fig. 6, time variations of the first four modal coefficients 
for uncontrolled reduced order model are shown. To verify 

the accuracy of the reduced order model, the outcome results 
have been compared to related DNS data. It is obvious that 
the low order model predicts relatively accurate results.
Fig. 7 shows a comparison between the time variations of 
field variable at x = 0.7, from the projection of an ensemble, 
which include the excited boundaries and the low order POD 
model with activating control part. The control part of the 
reduced order model is same to excitation function of the 
ensemble with the related boundary and the state part of the 
model is reconstructed using an ensemble with homogeneous 
boundary. It is clear that the outcome surrogate reduced order 
POD control model of viscous Burgers equation predicts 
results with good agreement.

Fig. 1. Comparison between solution of Burgers equation at 
Reynolds Number of 100 at t =0.2 (Left-Up), t = 0.3 (Right-Up) 

and t = 0.4 (Bottom), Point (Reference data [24]), Solid Line 
(Present Computation)
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Fig. 2. Distribution of four members of snapshots ensemble at Reynolds Number of 100

Fig. 3. Distribution of four members of boundary actuation snapshots ensemble at Reynolds Number of 100
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8- 1- 2- Reduced order modeling in short time period with the 
boundary excitation
In this section, the results of reduced order POD control 
model with boundary excitation which is different from the 
initial snapshots control function are presented. The test case 
is a sinusoidal wave in the first step and for the boundaries 
snapshots ensemble, a sinusoidal variation of boundary 
values versus time is applied. The ROM of this test case has 
been constructed using a similar number of modes to previous 
sections. Therefore, the obtained low-order model behaves as 

a controlled dynamical system. It was mentioned in section 3, 
that using the controlled temporal modes extension to ROM, 
the model contains two parts, the effect of problem state and 
the boundary control function. Therefore, the low order POD 
model is integrated in short time period to predict the effects 
of the influenced control part.
Fig. 8 shows the time variations of the field variable on the left 
boundary obtained from the low-dimensional POD control 
model compared to the model without control enforce. This 
figure affirms that the model deviates right at the beginning 

Fig. 4. Distribution of the four strongest modes without subtracting boundary non-homogeneities at Re=100

Fig. 5. Eigenvalues distribution and energy spectrum of POD modes in logarithmic scale
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time step for a model with an enabled control part. In contrast, 
the reduced order model without control is presented as fixed 
values. In Fig. 9, time variations of field variable, which are 
computed using the uncontrolled reduced order POD model 
and the controlled model, are shown.
It is concluded from the Figs. 8 and 9 that the model behaves 
appropriately when switching between the boundary control 
on and off.  Fig. 10 shows the comparison between the time 
variations of field variable at x=0.7, which are obtained from 
the uncontrolled and controlled low order POD model.

8- 2- Reduced order modeling of Burgers equation based on 
the direct boundary excitation
The snapshots for this test case also have been generated using 
a one dimensional viscous Burgers equation solver based 
on an accurate finite difference approach. The simulation is 
performed with an initial condition as:
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and the following boundary conditions for the controlled 

Fig. 6. Temporal variations of first four modal coefficients at Reynolds Number of 100, 
(○ Snapshots projection), (– – – Reduced order POD model without control).

Fig. 7. Comparison between the prediction of reduced order 
model on x = 0.7 at Reynolds number of 100

 (○ Snapshots projection with excited boundary) and
(– – – Reduced order POD model with Control).

Fig. 8. Comparison between the prediction of ROM on the left 
boundary at Reynolds number of 100

 (– – – Reduced order POD model without control) and
(—Reduced order POD model with control).
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system:
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8- 2- 1- The short time period modeling with the prescribed 
control function
The results obtained for the unsteady one dimensional Burgers 
equation with the prescribed control function at Re =100 are 
demonstrated in this section. For validation of the reduced 

order POD model, the outcome results, which are obtained 
with specified boundaries function, are compared with the 
DNS data. An ensemble with 100 members in different time 
steps with equal time increments and in a specific time span 
was considered as the input data. 
Fig. 11 shows the distribution of four members of snapshots 
ensemble of filed at 1st, 30th, 50th and 80th time steps. Also, 
for this problem, an eigenvalues problem has been solved 
to calculate the POD modes. The distribution of the four 
strongest modes is shown in Fig. 12.

Fig. 9. Comparison between the prediction of reduced order 
model on the left boundary at Reynolds number of 100

(– – – Reduced order POD model without control) and (—
Reduced order POD model with control).

Fig. 10. Comparison between the prediction of reduced order 
model on x=0.7 at Reynolds number of 100

 (— Reduced order POD model without Control) and
(– – – Reduced order POD model with Control).

Fig. 11. Distribution of four members of snapshots ensemble with specified boundary function at Re=100
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Fig. 13 shows the distribution of eigenvalues versus modes 
number and the energy spectrum of the first forty POD modes. 
The results illustrate that the amplitude of eigenvalues leads 
to a minimal value after the 12th POD mode. Note, the criteria 
for choosing the number of modes can be verified from 
these results. Based on the criteria for the low-order model 
construction, fourteen modes have been used to construct the 
reduced order model which can capture 99.9% of the field’s 
energy.

After construction of the ROM, the time marching is 
performed using an initial condition which is equal to the 
modal coefficients (obtained from the snapshots projection) 
in the first time step. In Fig. 14, the time variations of the first 
four modal coefficients for controlled reduced order model 
with specified boundaries specification (compared to High-
dimensional DNS data) are shown. It is evident from this 
figure that the model predicts relatively accurate results.

Fig. 12. Distribution of the four strongest modes with the subtracting boundary inhomogeneities at Re=100

Fig. 13. The Eigenvalues distribution and the energy spectrum of POD modes in logarithmic scale
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8- 2- 2- Reduced order modeling with boundary excitation in 
a short time period
In this section, the results obtained from the reduced order 
POD control model are presented. Fig. 15 shows the time 
variations of the field variable at x = 0.3 obtained from the 
reduced order POD control model compared to the model 
without control enforcement. This figure affirms that the 
model deviates right at the beginning time step for a model 
with an enabled boundary control part. In Fig. 16, time 
variations of field variable, which are computed using the 
uncontrolled reduced order POD model and the controlled 
model at x=0.3 is shown. Fig. 17 shows the comparison 
between the time variations of field variable at x = 0.7, which 
are obtained from the uncontrolled and the controlled reduced 
order POD model. It is concluded from Figs. 16 and 17 that 
the model appropriately has good behavior when switching 
between boundary control turn on or off.

9- Conclusions
In recent years, many efforts have been carried out on advancing 
the state of the art of proper orthogonal decomposition 
based low dimensional modeling. The improvement of this 
method is to apply for the coupled dynamical systems and 

PDE’s control problems is often discussed in the literature. 
To this effect, this paper contributes a new extension of POD-
based reduced order dynamical system and demonstrates its 
suitability for the control of the unsteady viscous Burgers 
equation. It is clear that the POD is a robust method for the 
estimation and the simulation of the steady and unsteady 
flows, respectively. In this work, a POD snapshots method 
was used for calculation of the POD modes. By projection 
of the Burgers equation along the POD modes, the reduced 
order dynamical system was reconstructed as an initial value 
problem. For enforcing the effects of boundary control into 
reduced order model, an ensemble of observations with fixed 
control function on the boundaries has been used. The control 
part of the snapshots is rewritten as an expansion of modes 
which are obtained from the ensemble without control. An 
order-reduction manner was used to choose the minimum 
number of modes for reconstruction of the dynamical system 
and therefore it prepares a low-dimensional model for fast 
prediction of the flow field. The present method is used to 
reconstruct a low order POD control model for short time 
integration. It is clear that the current dynamical system gives 
suitable results for switching between enabled boundary 
control and disabled excitation routine.

Fig. 14. Comparison between time variations of modal coefficients at Re =100, 
(○ Snapshots Projection), (– – – Reduced Order POD model with specified control function)
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