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ABSTRACT: In the current study, a finite element method is developed using the principle of total ~Review History:
potential energy based on nonlocal integral elasticity theory to investigate the free vibration behavior of
nano-scaled plates. The classical plate theory is considered for deriving the formulations of the plate. The
eigenvalue problem is extracted by using the variational principle, and corresponding natural frequencies of
free vibration are obtained using a numerical method. Different boundary conditions, various geometries,
and kernel types can now be appropriately analyzed by using the nonlocal finite element method proposed in
the current article. The results of the present study are compared with those available in the literature. Then
the effects of nonlocal parameters, geometrical parameters, surface effects and various boundary conditions,
including all sides clamped, all sides simply supported and clamped free, on the free vibration behavior of
nano-scaled plates are investigated. It is concluded that considering the nonlocal effect results in a reduction
of the natural frequencies. Natural frequencies decrease by increasing the length of the square plate and
increasing the aspect ratio of the rectangular plate. Besides, it has been seen that variations of natural
frequencies with the nonlocal parameter become less noticeable for plates with more considerable lengths.
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1- Introduction

In recent years, because of the beneficial mechanical,
chemical and thermal specifications of nanomaterials, their
applications are growing in many fields, such as mechanical
engineering, electronics, biology and chemistry. Discovery of
carbon nanotubes [1,2] and graphene sheets [3,4] have
accelerated the increasing attention of scientific and industrial
communities in nanostructures. The nanostructures have been
efficiently used as nano-devices, nano-sensors, nano-
actuators, atomic force microscopes, nano-composites etc.
The mechanical behavior of nanostructures can be studied by
experiments [5-7] and theoretical models that consist of
atomistic models [8—12] and continuum mechanics models.
In comparison with experimental and atomistic models, the
continuum theories can be applied more conveniently. This is
due to the fact that in the experimental investigations, the
preparation conditions in nano-scale are sometimes difficult
to achieve. Besides, the atomistic models are obviously more
computationally demanding. Some of the size-dependent
continuum theories which have been used for studying the
small-sized structures are micro-polar theory [13], couple
stress theory [14], micro-morphic theory [15] and nonlocal
elasticity theory [16]. According to nonlocal elasticity theory
[16], the stress at a given point is the function of strains at all
points in the surrounding neighborhood. Two general forms
exist for Eringen’s nonlocal elasticity theory, i.e. integral and
differential form. Even though the nonlocal differential
theory is extracted from the nonlocal integral theory under
certain conditions and as such it has some restrictions in
facing more general problems, it has widely been used due to
its simpler nature. Kitipornchai et al. [17] are among the first
ones who have studied the vibration of nano-plates using a
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continuum mechanics model. Lu et al. [18] have used the
nonlocal elasticity theory to study the bending and vibration
of a simply supported rectangular nano-plate based on
Kirchhoff and Mindlin plate theories. The governing
equations have been achieved by integrating the equations of
motion through the thickness. It is concluded that the nonlocal
parameters have significant effects on the mechanical
characteristics of nano-plates. Pradhan and Phadikar [19]
have proposed an analytical method to study the natural
vibration of single layered and double layered nano-plates
based on nonlocal elasticity theory. The equations of motion
are obtained for classical and first-order shear deformation
theories. They have shown that the effect of nonlocal
parameter is more considerable for smaller plates. Murmu
and Pradhan [20] have investigated the free vibration of
single-layered graphene sheets embedded in an elastic
medium based on nonlocal elasticity theory. They have used
the Differential Quadrature Method (DQM) to solve the
problem numerically and, the effects of small-scale parameter,
stiffness of the medium and aspect ratio on the natural
frequencies are studied. Aghababaei and Reddy [21] have
investigated the free vibration and bending behavior of a
rectangular nano-plate considering the nonlocal elasticity
theory. The formulations are based on the third-order shear
deformation theory. The bending and vibration problems are
solved analytically and the effects of nonlocal parameter on
the bending deflection and vibration frequency are
investigated. They have also compared the results with the
first-order and classical plate theories. Ansari et al. [22] have
analyzed the free vibration of simply supported and clamped
single layered graphene sheets considering the nonlocal
elasticity theory. The generalized DQM is used to numerically
solve the governing equations and the results are compared
with those of molecular dynamics. Simsek [23] has used the



H. R. Ovesy and M. Naghinejad, AUT J. Mech. Eng., 3(1) (2019) 77-88, DOI: 10.22060/ajme.2018.14550.5732

nonlocal elasticity theory to study the dynamic response of an
elastic single-walled carbon nanotube subjected to a moving
harmonic load based on Euler-Bernoulli beam theory
considering  simply-supported  boundary  conditions.
Newmark’s direct integration method and the modal analysis
method has been used to obtain the time-domain responses
and the effects of nonlocal parameter, velocity, excitation
frequency and aspect ratio are investigated. Also the results
have been validated by comparing the free vibration
frequencies and static deflections of the Carbon NanoTube
(CNT) with those available in the literature. Aydogdu [24]
have presented a generalized beam theory to study bending,
buckling and vibration of nano-scaled beams considering
Eringen’s nonlocal elasticity theory. Some special cases
assuming various beam theories, including those of Euler-
Bernoulli, Levinson, Reddy, Timoshenko and Aydogdu have
been considered in the formulations. Also, the effects of
geometrical and nonlocal parameters have been studied.
Alibeigloo [25,26] has used the three-dimensional theory of
elasticity based on nonlocal differential theory to study the
vibration behavior of nano-plates. The vibration problem has
been solved by utilizing the state-space method and Fourier
series, and a closed-form solution has been obtained. Also,
the effects of various parameters (e.g. nonlocal parameter,
length of plate, thickness etc.) on the natural frequencies have
been investigated. Karli¢i¢ et al. [27] studied the buckling
and free vibration of bonded multi-nano plates using the
nonlocal elasticity theory. They have used Navier’s method
and trigonometric method to obtain the exact solution for the
system of differential equations. Simsek [28] has proposed a
beam model for nonlinear vibration of nano-beams based on
the nonlocal elasticity theory. He employed the Hamilton’s
principle to derive the governing equations and related
boundary conditions considering the von-Karman’s non-
linear strain-displacement relations and Euler-Bernoulli beam
theory. Also the Galerkin method and He’s variational method
have been used to obtain an approximate analytical solution
for nonlinear frequency of the nano-beam. The effect of
nonlocal parameter on the nonlinear frequency ratios has
been investigated for three different boundary conditions and
it has been concluded that the effects of nonlocal parameter
on the nonlinear responses of nano-beams are important and
should be considered. Aydogdu [29] have used the nonlocal
elasticity theory to develop an elastic rod model for studying
the axial vibration of double-walled carbon nanotubes. The
effects of small-scale parameter, van-der-Waals forces and
geometrical parameters on the axial vibration have been
investigated. It has been concluded that the nonlocal effects
are more sensible for the rods with smaller length and the
van-der-Waals forces have non-negligible effect on the
vibration characteristics of the double-walled carbon
nanotubes. Zhang et al. [30] have obtained the exact length-
scale parameters for the vibration of initially stressed plate.
For this purpose, they have presented a micro-structured
beam-grid model for obtaining the vibration and buckling
solutions and used the nonlocal plate model. Behera and
Chakraverty [31] have employed the Rayleigh-Ritz method
to study the free vibration behavior of non-homogeneous
nano-plates based on nonlocal elasticity theory. They have
investigated the effects of nonlocal parameter, material
parameters and size-dependency on the frequency. Mehralian
and Beni [32] have examined the vibration of Functionally
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Graded (FG) nanotube based on nonlocal strain gradient
theory using the first order shear deformation shell model and
the effects of material length scale, thickness ratio and length
ratio on the frequency have been studied. Zeighampour and
Beni [33] have investigated the wave propagation in fluid-
conveying Double-Walled Carbon NanoTubes (DWCNTs)
using shear-deformable shell model and the nonlocal strain
gradient theory. The Hamilton’s principle has been used to
derive the governing equations and the effects of fluid
velocity, foundation stiffness, wave number, nonlocal
parameter and material length on the wave propagation have
been studied. Zeighampour and Beni [34] also have used the
nonlocal strain gradient principle to study the wave
propagation in a composite laminated cylindrical microshell.
Zeighampour and Beni [35] have used the nonlocal strain
gradient theory to study the wave propagation in cylindrical
viscoelastic Single-Walled Carbon NanoTubes (SWCNTs)
surrounded by a medium of viscoelastic foundation. They
derived the governing equations using the Hamilton’s
principle and Kelvin-Voigt viscoelastic model. In the
aforementioned studies, the nonlocal differential elasticity
(and strain gradient) theories are considered to investigate the
mechanical behaviors of nano-structures. It is noted that the
nonlocal differential elasticity theory, which is extracted from
the more general integral form under some special conditions,
faces some limitations. For instance, the nonlocal differential
elasticity theory is obtained considering some special kernel
functions, also the implementation of simply supported and
free boundary conditions are ambiguous [36]. In order to
overcome the latter restrictions, some researchers have
conducted some studies based on nonlocal integral elasticity
theory. Polizzotto [37] has extended the three variational
principles, (i.e. the total potential energy, the Hu-Washizu and
complementary energy principles), to the nonlocal integral
elasticity theory. A suitable framework for applying the Finite
Element Method (FEM) to nonlocal problems is theorized by
using the principle of total potential energy. Pisano et al. [38]
have used the FEM based on nonlocal integral elasticity to
numerically analyze a plate under tension. They have
discussed the computational issues of the method in detail.
The method is verified and its effective application is
approved. Taghizadeh et al. [39,40] have used the FEM
considering the nonlocal integral elasticity to study the
bending and buckling problems of a nano-scaled beam. They
have compared the results with those of nonlocal differential
elasticity theory and investigated the effects of different
boundary conditions and nonlocal parameters on the bending
deflection and buckling load. Naghinejad and Ovesy [41]
have proposed a FEM to study the vibration behavior of
nano-scaled beams based on nonlocal integral elasticity
theory. The results are compared with those of nonlocal
differential elasticity and the effects of nonlocal and geometric
parameters on the free vibration of Euler-Bernoulli nano-
scaled beams are investigated. Naghinejad and Ovesy [42]
also have studied the free vibration of viscoelastic nano-
scaled beams based on nonlocal integral elasticity theory and
FEM. The effects of nonlocal parameter, viscoelastic
parameter, geometrical parameter and boundary conditions
on the natural frequencies have been investigated.

In the current study, a FEM is developed for analyzing the
free vibration behavior of nano-scaled plates. The principle
of total potential energy in conjunction with the nonlocal
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integral elasticity are used to provide the FEM formulations.
The relations are based on Classical Plate Theory (CPT).
Natural frequencies are then obtained by numerically solving
the corresponding eigenvalue problems for nano-scaled
plates. The results of the present study are compared with
those of local elasticity and nonlocal differential elasticity
theory, wherever available in the literature. In addition,
the effects of nonlocal parameter, different boundary
conditions, geometrical parameters and surface effects on
the vibration behavior of nano-scaled plates are investigated.
In comparison to the nonlocal differential elasticity theory,
the present FEM is capable of modeling the various types of
boundary conditions and different geometries of nano-plates
more effectively. To the best of the author’s knowledge it
is the first time the FEM in conjunction with the nonlocal
integral elasticity is used to study the vibration behavior of
nano-plates, noting that the current method provides more
versatility, especially in dealing with the boundary conditions.

2- Nonlocal Integral Elasticity Constitutive Equations
Using classical continuum mechanics, which ignores the
small-scale effects, leads to inaccurate results in analyzing
the nano-sized structures. So, for the appropriate modeling
of the nanostructures, the size-dependent continuum theories
ought to be used. One of the popular size-dependent theories
is the nonlocal elasticity theory that has been developed by
Eringen and Edelen [43,44]. In solid mechanics, an integral-
type nonlocal material model is a model in which the
constitutive law at a point of a continuum involves weighted
averages of a state variable or of a thermodynamic force over
a certain neighborhood of that point. Clearly, nonlocality
is tantamount to an abandonment of the principle of local
action of the classical continuum mechanics. A gradient-
type nonlocal model, while adhering to this principle
mathematically, takes the field in the immediate vicinity of
the point into account by enriching the local constitutive
relations with the first or higher gradients of some state
variables or thermodynamic forces. A salient characteristic
of both the integral- and gradient-type nonlocal models is
the presence of a characteristic length or material length in
the constitutive relation [45]. Nonlocal elasticity theory, in
the general integral form, states that the constitutive law at
a point is a function of weighted averages of state variables
over a certain neighborhood [45]. Accordingly, for a linear
isotropic continuum the nonlocal stress field #(x) is expressed
as

t(x):J.a(‘x —x'

v

7)o (x")dv )

where a(x) is the local stress tensor at point x and is given by
Hooke law as

o(x)=D:e(x) )

In which, D is the fourth-order elastic moduli tensor and ¢
is the local strain tensor. In Eq. (1), a is the nonlocal kernel,
or attenuation function, which is a function of the Euclidean
distance between x (reference point) and x' (all points in the
vicinity), and z=e a/l in which a and [ are the internal and
external characteristic length respectively, and ¢, is a specific
constant for each material. By accommodating the dispersion
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curves of plane waves with those of experiments or atomic
lattice dynamics, the shape of kernel function can be acquired
for each material [16]. By increasing the distance from the
reference point the value of kernel function i.e. the nonlocal
effect is reduced and becomes negligible when [x-x'>L,,
where L, is called the effective distance. Using Eq. (2)
another form of Eq. (1) becomes

t(x):l;[a(‘x -x'

It is noted that if the internal length goes to zero, the nonlocal
kernel would become Dirac delta in which case Eq. (3) would
retrieve the classical local form (Hooke law). For this purpose
the nonlocal kernel is required to satisfy the following
normalization condition [37]

J.a(‘x —x'

14

©

T)Dze(x ")dV ! 3)

,T)dV '=1 (4)

where V_is an infinite domain. Several studies have discussed
the nonlocal kernel and its conditions near the boundaries. In
the current study in line with that suggested by Pisano et al.
[38] the kernel functions will be truncated near the boundaries
of the plate (see Fig. 1).

core

domain

Fig. 1. Typical two dimension kernel function shapes for a plate
[38]

Often in the literature [37], the constitutive law for the
nonlocal integral elasticity is assumed as a two-phase
material, in which phase one and two correspond to local
and nonlocal elasticity respectively. The same assumption is
adopted in the current study to have the constitutive equation
as follows

t(x)=§10'(x)+é'zj‘a(‘x —x',r)a(x')dV' (5)
b

where , and , are the positive constants referring to the local

and nonlocal volume fractions of the assumed two-phase

material, respectively. It is considered that {,+{;=1. It is noted

that by replacing the nonlocal kernel function a in Eq. (1) by

its modified form a as follows

7)

Eq. (5) can be obtained directly from Eq. (1).

&(‘x’—x ,z’)=§’1§(x’—x)+é'2a(‘x'—x

(6)
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3- Formulations of Nonlocal FEM based on Total Potential
Energy Principle

In this section, a nonlocal FEM is developed to study the
mechanical behavior of nano-scaled plates based on classical
plate theory. As it is generally proposed by Polizzotto [37] the
current nonlocal FEM is formulated by using the principle
of total potential energy considering the nonlocal integral
elasticity theory. Pisano et al. [38] and Taghizadeh et al. [40]
have applied the aforementioned nonlocal FEM to tension
and bending problems. Naghinejad and Ovesy [41] have
extended the nonlocal FEM to study the vibration behavior of
nano-scaled beams. The current study is dedicated to extend
the nonlocal FEM for analyzing the free vibration behavior
of the nano-scaled plates. One of the advantages of this
method over the nonlocal differential elasticity ones is that, it
is capable of accurately analyzing the simply supported and
free boundary conditions. Besides, various geometries can be
modeled using the current method.

By considering the nonlocal integral elasticity theory (Eq.
(5)) and in the presence of inertia effects, the total potential
energy is written as

H(u):
%[g,ys(x):D ce(x)dV +§2JJa(\x’—x\,r)g(x):D :s(x’)dV’dV] (7)
Wm 7Winer1iu

where works done by inertia and external forces are shown
by W, . and W, _ respectively. By applying the variations to

inertia

minimize the total energy functional, Eq. (7) becomes
M (u)= g’J&:(x ):D:e(x)dV
Vv

+.§2”a(‘x’—x
Vv
-W,, —W

®)

,r)é'g(x):D ce(x")dvav
inertia :0

Now, W_ and W,

inertia

are replaced by the corresponding terms,
M (u)= §1J.5g(x ):D:e(x)dV
Vv
+§2”a(\x '—x
Vv

—jl?.csu dv - jf.(su ds —Jé'u (—pd’)dV =0
14 S, 14

,z’)dg(x):D:g(x')dVdV )

where u is the displacement field, 7 and b are the surface
force on §, and body force in V' respectively. Eq. (9) can be
discretized and used as a foundation for the so called nonlocal
finite element formulations. For this end, the total domain 7
is divided into N sub-domains ¥ and the displacement field
u(x) and strain tensor &(x) of the n-th element are expressed as

u(x)=Nn(x)dn (10)

e(x)=B,(x)d, (11)

where N (x) and B, (x) are the matrixes containing the shape
functions and the corresponding partial derivatives of the
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shape functions of the n-th element, respectively. Matrixes
N and B are defined considering employed element type. In
addition, the nodal degrees of freedom for the n-th element
are collected in vector d . Using Egs. (10) and (11) and after
the discretizing process, Eq. (9) becomes

N

611—512[&15 [IB,{ (x):D:B,(x)dV ]dﬂ]

n=1

+4’2g:z_l[§d: [Jyja(x '—x

,T)B: (x):D:B, (x")avav ]dm]
(12)

N

—Z[&d[ [N (x)b (x)av J

N

[&1: [N ()T (x )dS]

_i[&i: [jzv[ (x)(-pN, (x))aV ]d’,, ] =0

Now, the n-th element node displacement matrix d is
connected to the global node displacement matrix U through
the Boolean connectivity matrix C, as

d,=C.U (nefl...N}) (13)
By incorporating Eq. (13) into Eq. (12):
m:g,i[ﬁwcj [IBZ (x):D:B,(x)av ]C”U]
+§zii[5{ﬂc,{[_“.a(x'x,T)B”T (x):D:B, (x")dvdv ]CMU]

n=lm=1 VoV ( 1 4)

N N

—Z[&U’cf INT ()b (x)ar J—Z[&Ufcf [NT ()i (x )dS]

—i{&u’c{ [jN[ ().(=pN, (x))a¥ ]cn uJ 0

The nodal load vector F' total nonlocal stiffness matrix

otal®
KM . total local stiffnessT matrix K*,  and total mass matrix
M, are assumed as
L u L
Kia =62 K, (15)
n=1
N N
NL NL
KTotaI = 412 ZZKnm (16)
n=lm=1
N N
Frog =2, + 2 F, (17)
n=1 n=1
N
MTolal = ZMn (1 8)
n=l1
where
K :CT[ij(x):D:Bn(x)dV c, (19)
V
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KM =cT I}[V{a(‘x’—x T)BI (x):D B, (x")dV dv ]Cm (20)
=C’ _[N )b (x )av 21
C, S{N (x )ds (22)
M, =C] VJN,{ (x)-(pN, (x))ar |C (23)

It is noted that the total stiffness matrix consists of the
nonlocal and local part (Eq. (24)).

L NL
=K Total +K Total

K Total (24)
It is noted that Egs. (15) to (18) are known as the assembling
process and Egs. (19) to (23) are the relevant quantities of
the elements. Furthermore, K " is the local stiffness matrix
of the n-th element and K, ** is the nonlocal stiffness matrix
demonstrating the nonlocal effects of the m-th element on the
n-th element. By using Egs. (15) to (24), Eq. (14) will be
expressed as

éH 5U KTotalU + §U MTotul U 5(] F}‘utal = 0 (25)
Eq. (25) leads to the following form
KTotalU +MTotal U F'Total (26)

In the present study, the classical plate theory is used for
analyzing the dynamic behavior of nano-scaled plates. For
this purpose the following expressions are considered for the
strains of the plate.

& u,

x X XX
E=4¢&, = Vo, —Z\wW,, 27
7xy uO,y +v 0,x 214} Xy

where ¢, €, and 7, are longitudinal strain, transverse strain
and in- plane shearing strain respectively and u, v and w are
the deflections of the mid-plane in direction of x, y and z.
Considering the pure bending conditions, strain tensor (Eq.
(27)) is expressed as

g\' w XX
8(x ) SVE (TTE VW (T B, (x )dn (28)
Vsy 2w,

The four-node Adini-Clough quadrilateral plate bending
elements with three degrees of freedom in each node are
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considered. For this element type the nodal displacement
vector d, containing 12 degrees of freedom for the n-th
element, is

dn:[wl Wie Wi, Wy Wy, Wy, Wi Wi, Wy Wy Wy

v ] (29)

The shape functions of the considered element type in the
local coordinate system are

8y

e(a=¢-n)
e(1-¢")

e(l—nz)

f(a+&-n)
- (1-€°)

(30)

-g(1-7°)
h(a—&+n)
h(1-¢%)
~h(1-7°)

In Eq. (30):

e=(1-¢)(1-n).f =(1+&)(1-n).g
=(1-&)(1+n),a=2-&-n°

Finally for the plate element, the stiffness and mass matrix
would be obtained using the following equations. Also, the
Gauss-Legendre quadrature rule will be used for evaluating
the numerical integrations. It is noted that in the following
equations the local coordinates are used.

=(1+&)(1+7), an

NINT NINT
nyy jBT D:Bww,(detJ)dz C, (32)
j=1 i=l h, &,
NINT NINT NINT NINT
KM =cT ,
=61 2 2ol ool o
*( ”T),f,,v, D (Bm )5 ) WiW W W /(det]) (detJ)é’”J dzdz )C,,
NINT NINT
M,=Cr| > Z Jww ; (detJ )dz C, (3%

j=1 i=l 5[,,]/
where NINT is the number of Gauss points in each direction,
h_is the thickness of the element, w, and w, are the weights
of the integration and J is the Jacobian matrix. As it is
seen, different types of kernel function could be used in the
presented FEM. For comparing the results of the current
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study with those of the nonlocal differential elasticity, which
is obtained by considering some special kernel types such as
the one presented as Eq. (35), the same two dimension kernel
type will be assumed to obtain the results

a(‘x —x' ,r) =4 (27:1272 )71 K, (x l_rx 'J (3%5)

K, is the modified Bessel function of the second kind, r=e a/!

and /, is a normalization factor expressed as

1
IV (27rlzz'2 )71 K, (‘x -x'|/ lr)dV

(36)

In addition because of the importance of the surface effects
in nano-scale [46—51] , also the following relations are added
to the formulation to consider the surface effects. For this
purpose using the procedure explained above and as it has
been expressed in [47,52], the stiffness matrix corresponding
to surface effects is considered as follows:

Ksrf =C:[J.BSZ (x):Cs:B” (x)dA]Cn (37)
VV!

.T)B,) (x):Cs :B,, (x')dA’'dA jcm (38)

NL _ T '
Ksnm _Cn J_“a(‘x _x
Van

where Ks * is the local surface effect stiffness matrix and
KsnmNL is the nonlocal surface effect matrix. Also Cs is the
surface elastic constants matrix which is expressed as:

2u + A, T A 0
Cs=h/2| 7,+A4 2u +4, 0 (39)
N

In which 7, u and A_are the residual surface tension and
the surface Lame constants respectively. Also B_ is the matrix
containing the derivatives of the shape functions as [52]:

0 N
Ox
A A R (40)
oy oy
ON, 0N, ON,
| Ox oy Ox

It is noted that, as it is clear from the procedure of the current
method and using the principle of total potential energy to
extract the nonlocal finite element formulations, any kind of
boundary conditions can be analyzed by the current method,
i.e. one of the main advantages of the FEM is that various
boundary conditions, e.g. clamped, simply supported, free,
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partial boundary conditions, etc. can be handled. So, the
natural boundary conditions can be achieved with no specific
difficulty if the current nonlocal integral FEM is applied. It is
noted that the latter boundary conditions involve some certain
complications in the case of nonlocal differential elasticity
methods. The latter difference between two methods arises
from the fact that, only the essential (geometric) boundary
conditions should be satisfied in the FEM.

4- Governing Equations and Vibration Analysis

For analyzing the free vibration characteristics, the plate is
under no body or surface forces. So, the right-hand side of
Eq. (26) is zero.

(KTota/ +Ks)U +MTotalU:O (41)
The solutions of the form
U=A4(x)e'™ (42)

are considered to evaluate the natural frequencies and mode
shapes for the free vibration of the nano-plate. Inserting Eq.
(42) in Eq. (41) yields

(KTota/+KS _MTOIGIQ)Z)A :0 (43)
Eq. (43) is an eigenvalue problem equation, which is used
to obtain the natural frequencies and mode shapes of the
free vibration. Eq. (43) has a non-trivial solution when the
determinant of the following matrix is zero,

IS

+K, =My, 0’| =0 (44)

Total

The total stiffness matrix K.

i » SUrface effects stiffness matrix
C and total mass matrix M,

; e OF the nano-plate are achieved
by the developed FEM. Then the system of equations,
which is obtained by applying the condition of Eq. (44), is
numerically solved and the eigenvalues (natural frequencies
o,) and the eigenvectors (mode shapes 4 ) are acquired. The
numerical method which has been used for obtaining the
eigenvalues is the well-known Jacobi eigenvalue algorithm.
The Jacobi eigenvalue method repeatedly performs rotations
until the matrix becomes diagonal, then the elements in the
diagonal are approximations of the eigenvalues. It is clear
that, as it has been mentioned earlier, the current method is
capable of modeling different types of boundary conditions.
To this purpose, the essential boundary conditions are taken
into account in the stiffness and mass matrixes, and the
corresponding terms will be modified.

5- Results and Discussion

In the current article, the free vibration behavior of nano-
scaled plates is going to be studied using the developed FEM
based on nonlocal integral elasticity considering the classical
plate theory. In this section, first the convergence study is
carried out to determine the sufficient number of mesh grids
for the study. Then, the natural frequencies obtained by the
current study method are compared with those of nonlocal
differential elasticity theory available in the literature (with
and without surface effects). At last, the effects of nonlocal
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parameter, geometrical parameters and various boundary
conditions on the free vibration of nano-scaled plates are
investigated (without surface effects). The properties of the
analyzed nano-plate are shown in Table 1.
Table 1. Properties of the nano-plate [17]
E [TPa] v h [nm]
1 0.16 034

p [kg/m’]
2250

[ [nm]
10

e,a [nm]
0,0.5,1,1.5,2

It is noted that, wherever the non-dimensional frequency
term is used it means that the frequency has been non-
dimensionalized as the following form.

@y =0l’\[ph /D, D =Eh*/12(1-v7)

The convergence study for a square nano-plate considering
the nonlocal parameter ea=1 [nm] and all sides simply
supported boundary conditions is carried out by studying
the fundamental natural frequencies (see Table 2). Square
elements of the same size are used for meshing the square
plate. As it is seen for the mesh sizes of the 45x45 elements
the results become significantly convergent. So for calculating
the rest of the results, in the current paper, the mesh size of
45x45 elements have been used.

Table 2. Fundamental natural frequency of all-sides simply
supported nano-plate based on nonlocal FEM

Number of square  Fundamental natural frequency [GHz]

elements (e,a =1 [nm])

3x3 71.5887

<7 59.9211
11x11 55.953
15x15 54.1543
19x19 53.1874
23x23 52.6066
27x27 52.2302
31x31 51.9721
33x33 51.8128
37x37 51.789
41x41 51.788
45x45 51.788

Table 3 shows the comparison of non-dimensional natural
frequencies of present analysis based on the nonlocal FEM with
those of Pradhan and Phadikar [19], Murmu and Pradhan [20]

and Ansari et al. [22] based on nonlocal differential elasticity
theory for two kinds of boundary conditions and nonlocal
parameters e a=0 and 1. It is noted that the results of Pradhan
and Phadikar [19] are obtained using the Navier’s solution
and classical plate theory and Murmu and Pradhan [20] are
obtained using the DQM and CPT whilst those of Ansari et al.
[22] are obtained according to first order shear deformation
theory and also molecular dynamics model considering
zigzag and armchair Single-Layer Graphene Sheet (SLGS).
As it is seen, there is a good agreement between the results
for the local case (e @=0), but when the nonlocal effects are
taken into account the results of the present study based on
nonlocal integral elasticity tend to be smaller than those of
the nonlocal differential elasticity. Besides, the discrepancy
between the results are more pronounced for the case of
simply supported boundary conditions in comparison with
the clamped boundaries. It might be due to the fact that, the
nonlocal differential elasticity theories have some difficulties
satisfying the natural boundary conditions. In addition,
the nonlocal differential equations are extracted from the
relations of nonlocal integral elasticity in the regions far from
the boundaries. However, the general agreement between the
results is satisfactory.

In Table 4 the results of the current study considering the
surface effects are compared with those of Karimi et al. [47]
based on differential nonlocal elasticity and Two Variable
Refined Plate Theory (TVRPT). The properties of the surface
layer are considered as 7 =0.83 N/m, 1 =0.47 N/mand 4 =0.28
N/m [47]. A fairly good agreement is seen between the results.
Also it is seen that by increasing the length to thickness ratio
the non-dimensional natural frequency increases.

The effects of the geometrical and nonlocal parameters on
the free vibration behavior of nano-scaled plates considering
different boundary conditions are to be studied. The properties
of the nano-plate are given in Table 1. Variations of natural
frequencies with nonlocal parameter are shown in Figs. 2 to 4
for different lengths of a square plate. Three different boundary
conditions including all-sides simply supported, all-sides
clamped and clamped-free boundaries have been considered.
As itis seen, the natural frequencies decrease by increasing the
nonlocal parameter (e a). The latter softening phenomenon is
stronger for the smaller lengths of the plate, i.e. the variations
of natural frequency with the nonlocal parameter are less
noticeable for the plates with larger lengths. This behavior
might be attributed to the importance of the nonlocal effects
near the boundaries. Thus, for the square nano-plate of the
smaller length the boundary conditions play a significant role
on the nonlocal characteristics of the plate and the effects of
nonlocal parameter on the natural frequencies will become

Table 3. Fundamental natural frequency comparison for a nano-plate

o, =ol\Nph/D
Bound Pradhan and Murmu and Ansari Pradhan and Murmu and Ansari Ansarietal. Ansariet al.
miir{t.ary Present Phadikar Pradhan et al. | Present Phadikar Pradhan et al. [22] - MD [22] - MD
conditions [19] [20] 122] [19] [20] [22] (zigzag)  (armchair)
e,a=0 [nm] e,a=1[nm]
All-sides simpl
SAes SIPY |19 71 19.72 1973 2065 | 15.52 18.02 18.01 1888 17.62 17.84
supported
All-si
sides 35.90 - - 37.65 | 28.16 - - 3378 3436 34.84
clamped

&3
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Table 4. Fundamental natural frequency comparison considering the surface effects for a simply supported nano-plate (/=10 nm)

o, =ol\Nph/D
Length to Present [without L. Present [without L.
. . Present Karimi et al. [46] Present Karimi et al. [46]
thickness ratio surface effects] surface effects]|
e,a=0 [nm] e,a=1[nm]
I/h=10 19.71 29.82 29.88 15.52 24.43 28.77
I/h=5 19.71 24.85 19.44 15.52 20.85 18.04
/h=2 19.71 19.87 12.54 15.52 15.74 11.48

more noticeable. In addition, the increase in plates length has
effectively resulted in the reduction of nonlocal effects (e a/l)
when assuming a constant e a value, because the effects of
boundary conditions will diminish.

Figs. 5 to 7 show the variations of fundamental natural
frequencies with length of the square plate for three boundary
conditions. The results have been depicted for various
nonlocal parameter values ¢a=0,0.5,1,1.5,2. As it is seen
by increasing the length of the plate the natural frequencies
will decrease regardless of the nonlocal parameter value.
In addition, the natural frequency of the all-sides clamped
plate has experienced more reduction compared to those of
the plate with other boundary conditions. It is due to the fact
that as it has been explained, the truncation of kernels near
the boundaries results in the effect of nonlocality to be more
pronounced there. Thus, for a stronger boundary condition
this effect will be more prominent. For further comparison,
Fig. 8 shows the variations of natural frequencies with length

70

SS

60

SS SS
E 50 Ss
240 ——1=10 [nm]
330 444444444 1=20 [nm]
E - = =1=30 [nm]
§ 20 — - -1=40 [nm]

=]

Fig. 2. Effects of nonlocal parameter (e a) on the fundamental
natural frequencies of a square nano-plate with all-sides simply
supported boundary conditions for different lengths

Cl

cl Cl
5100 a
g 80 1 ——1=10 [nm]
;.;j o L e 1=20 [nm]
T - - -1=30 [nm]
| — - -1=40 [nm]

Fig. 3. Effects of nonlocal parameter (e @) on the fundamental
natural frequencies of a square nano-plate with all-sides
clamped boundary conditions for different lengths

of the square plate for two boundary conditions and different
nonlocal parameters in a single diagram. It is observed that
by increasing the nonlocal parameter, the reduction of natural
frequency with length of the plate decreases.

The effects of aspect ratio on the free vibration of a rectangular
nano-plate are depicted in Figs. 9 to 11. Three different
boundary conditions have been considered. As it is observed,
by increasing the aspect ratio of the plate (Iength/width) the
natural frequencies decrease. Moreover, for smaller aspect
ratios the effects of nonlocal parameter are more pronounced
in comparison with the larger aspect ratios. It is also seen that
for a clamped free boundary condition increasing the aspect
ratio results in the steeper decrease of the natural frequency
in comparison with other two boundary conditions. It is due
to the fact that by increasing the aspect ratio, i.e. length (b)
to width (a) ratio, of the plate the length of the free edges
increases and it leads to lower natural frequencies.

80

-
=)

Cl Cl
E 60
5] Fr
=50
%
5 ——1=10 [nm]
240
S e 1=20 [nm]
=
230 = ==1=30 [nm]
§ — - =1=40 [nm]

[
=]

=)
T

Fig. 4. Effects of nonlocal parameter (e,a) on the fundamental
natural frequencies of a square nano-plate with clamped-free
boundary conditions for different lengths

600
__ 500 e.a =0 [nm] (local)
N
% 100 L —— All-sides simply supported
=
% --------- All-sides clamped
2.300 - \
D \
& - = = Clamped-free
E L
£ 200
<
Z

100

0
0 10 20 30 40

Square length [nm]

Fig. 5. Variations of fundamental natural frequencies with
length of the square nano-plate considering e a=0 for different
boundary conditions
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400
350 - 70
e.a=1[nm]
=300 - . 60 |-
5 —— All-sides simply supported ss
=250 : S50t
t? N All-sides clamped E
% 200 Nod 540 L e.a=0 [nm]
2 - - - Clamped-free Sl N e ] ¢.a=0.5 [nm]
g 130 r % 30 ¢ - --ea=1[nm]
= =4
2 100 - % a0 L —--e.a=1.5 [nm]
z ——-¢,a=2 [nm]
50 - ol
0 i 0 Il Il Il Il Il Il
0 10 20 30 40 0 . ) 3 . 5 p 7
Square length [nm] bla
Fig. 6. Variations of fundamental natural frequencies with Fig. 9. Variations of fundamental natural frequencies with
length of the square nano-plate considering ¢ a=1 for different aspect ratio of a rectangular nano-plate considering all-sides
boundary conditions simply supported boundary condition
300
140
cl
250
N 120 T
% e.a=1.5[nm]
=200 + =
E‘ —— All-sides simply supported = 100
3] A =
2150 + \ =
= \ All-sides clamped g 80 e,2=0 [nm]
= R S G ¢ 405 [um]
S 100 £ 60 | _
g5 - = - Clamped-free ha - --¢a=1[nm]
s g — - -e,a=1.5 [nm]
Z 2 e.a=l.
30 r § 407 ——-e.a=2 [nm]
. | e s, 2 |
0 10 20 30 40
0 ‘ ‘ ‘ ‘ ‘ ‘
Square length [nm] 0 . ) 3 . 5 P ;
. . U b/
Fig. 7. Variations of fundamental natural frequencies with ¢
length of the square nano-plate considering ¢ a=2 for different Fig. 10. Variations of fundamental natural frequencies with
boundary conditions aspect ratio of a rectangular nano-plate considering all-sides
clamped boundary condition
500
—&— All-sides simply supported - e,a=0 [nm] 50
= 400 - - - All-sides simply supported - ¢,a=0.5 [nm]
% “‘“ ---&--- All-sides simply supported - e_a=1 [nm] 70 -
%300 \ —— All-sides clamped - € a=0 [nm] <60 I
§ ---- All-sides clamped - ¢ a=0.5 [nm] E s
E ------- All-sides clamped - e a=1 [nm] c:f [ e.a=0 [nm]
= 200 %40 Foo O NSE e e.a=0.5 [nm]
:§ & ---e.a=1[nm]
z ER — - -eals
100 2 e.a=1.5 [nm]
Z 20 - ——-e.a=2 [nm]
0 10
0 10 20 30 40 0
Square length [nm] 0 1 2 3 4 5 6 7
b/a
Fig. 8. Variations of fundamental natural frequencies with
length of the square nano-plate considering different nonlocal Fig. 11. Variations of fundamental natural frequencies with
parameters for clamped and simply supported boundary aspect ratio of a rectangular nano-plate considering clamped-
conditions free boundary condition
Figs. 12 to 14 show the variations of non-dimensional natural length to thickness ratio. For a non-zero values of e, i.e.
frequencies with length to thickness ratio of square plate for nonlocal cases, the non-dimensional natural frequencies
different nonlocal parameters. All-sides clamped, all-sides increase by increasing the length to thickness ratio. Also, the
simply supported and clamped-free boundary conditions have increase of nonlocal parameters causes the non-dimensional
been studied. It is seen that for a case of e ,a=0 (local analysis) natural frequencies to decrease.

the non-dimensional natural frequency is not affected by the
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Fig. 12. Variations of non-dimensional natural frequencies
with length to thickness ratio of square nano-plate for all-sides
simply supported boundary conditions
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Fig. 13. Variations of non-dimensional natural frequencies
with length to thickness ratio of square nano-plate for all-sides
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Fig. 14. Variations of non-dimensional natural frequencies with
length to thickness ratio of square nano-plate for clamped-free
boundary conditions

6- Conclusion

Based on the nonlocal integral elasticity a FEM is developed
to study the dynamic properties of nano-scaled plates. The
formulations are derived using the principle of total potential
energy and the classical plate theory is considered. The
natural frequencies are obtained by numerically solving
the eigenvalue problems. Despite the difficulty of handling
the simply supported and free boundary conditions in

nonlocal differential elasticity theory, the current method
is able to analyze various boundary conditions properly. In
addition, different geometries and nonlocal kernel types can
be considered. The results of the current study have been
compared with those available in the literature, and the effects
of nonlocal parameter, boundary conditions, geometrical
parameters and surface effects on the free vibration of
nano-scaled plates have been studied. It has been seen that,
increasing the nonlocal parameter (e a) results in the natural
frequencies to be decreased. Also, the natural frequencies will
decrease by increasing the length of the square plate. For the
plates with larger lengths, the variations of natural frequency
with the nonlocal parameter are less noticeable. Increasing
the aspect ratio leads to decreasing the natural frequencies of
the plate. In addition, the effects of nonlocal parameter are
more pronounced for smaller aspect ratios. Considering the
surface effects by increasing the length to thickness ratio, the
non-dimensional natural frequency increases.
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