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ABSTRACT: Piezoelectric cantilevers are mostly used for vibration energy harvesting. Changing the
shape of the cantilevers could affect the generated output power and voltage. In this work, vibration
energy harvesting via piezoelectric resonant unimorph cantilevers is considered. Moreover, a new
design to obtain more wideband piezoelectric energy harvester is suggested. This study also provides
a comprehensive analysis of the output voltage relationships and deducing an essential precise rule of
thumb to calculate resonance frequency in cantilever-type unimorph piezoelectric energy harvesters
using the Rayleigh-Ritz method. The analytical formula is then analyzed and verified by experiment
on a fabricated prototype. The analytical data was found in an agreement with the experimental results.
An important finding is that among all the unimorph tapered cantilever beams with uniform thickness,
the triangular cantilever, can lead to highest resonance frequency and by increasing the ratio of the
trapezoidal bases, the resonance frequency decreases. It is concluded that the shape can have a significant
effect on the output voltage and therefore maximum output power density. Some triangular cantilever
energy harvesters can arrange in pizza form using cantilever arrays. This arrangement decreases the
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occupied space and can lead to increasing the power density and also operating bandwidth.

Power density

1- Introduction

A vibration powered generator is a type of electric generator
that converts the kinetic energy from vibration into electrical
energy. The vibration may be from seismic (ground)
vibrations, acoustic pressure waves, forces applied directly to
the load on the working surface or other surrounding sources
[1-6]. The conversion of ambient energy in the environment
surroundings into electrical energy is called energy
harvesting or energy scavenging. During the past decade,
energy harvesting from mechanical vibrations of ambient
environments has attracted the attention of many researchers
due to the ever-increasing desire to produce wireless and
portable electronics with extended life [7,8]. While sensors
and wireless electronic equipment are becoming more
prevalent, delivering power to the wireless sensor networks
is difficult and remains a challenge. Mechanical vibrations
are more considered to study in recent decades [9,10]. They
are abundant and ubiquitous in the environment, and they
provide no limitations in their applications on cloudy days
or at nights. The standard mechanisms for vibration energy
harvesting are; using electrostatic devices, electromagnetic
field, and utilizing piezoelectric materials [6,11]. Piezoelectric
based material’s flexibility in volume and size has led to the
development of micro-generators, that they are utilized in
places where other sources of energy are not readily available
[6,12-16].

Vibration energy harvesting with the piezoelectric material
can currently generate up to 300 microwatts per cubic
centimeter, making it an attractive method of powering low-
power electronics [17]. Compared to other structural forms
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of beams [18], a cantilever has the maximum deformation
under the same conditions. The larger deflection leads to
higher strain and more output power. Therefore the vast
majority of piezoelectric vibration power scavenging devices
use a cantilever structure [19-22]. A cantilever-type power
scavenger, as well as a tapered one, considered the optimum
design had been intensively studied [23-25]. It is observed
that the tapered one ensures a large constant and more uniform
distribution of strain in the piezoelectric layer resulting in
higher power output in comparison to the rectangular beam
[6].

A piezoelectric unimorph cantilever structure includes one
inactive (substrate) and one active (piezoelectric) layer,
whereas a bimorph cantilever has one inactive layer, but two
active layers. In order to analyze and calculate the resonance
frequency of unimorph trapezoidal V-shaped -cantilever
beams (in particular case triangular cantilevers), a significant
and straightforward analytical formula using Rayleigh-
Ritz method is derived. Furthermore, the optimization
method for adjusting (enhancing or lowering) the resonance
frequency with this formula is used. In the particular case
that piezoelectric layer thickness is negligible, the resonance
frequency formulation for a simple triangular cantilever is
formulated that is by that extracted in [26-28]. It is noteworthy
that a cantilever beam has many different modes of vibration
in different resonance frequencies. The fundamental mode of
vibration typically provides the most deflection and hence
output voltage and power. Accordingly, power scavengers are
generally designed to operate in the fundamental resonance
frequency [15,16].

In this research, under the influence of base excitation,
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estimation of voltage response for rectangular and tapered
unimorph piezoelectric cantilever beam is done. Analytical
formulas in forced vibration analysis are validated by
experimental results. Studies are carried out using MATLAB
and MATHEMATICA software. Some parts of the code are
written in MATHEMATICA, and the output is used in the
MATLAB [6].

This paper presents a work on improving unimorph
piezoelectric vibration energy harvesters based on structural
modifications. A new design for a unimorph cantilever-type
piezoelectric energy harvester is proposed. The main focus
of this paper is to study the resonance frequency and output
voltage of the proposed design in piezoelectric mechanical
energy harvester and then to increase the bandwidth of the
operation of the system.

2- Modal analysis

The structure of unimorph piezoelectric rectangular cantilever
is shown in Fig. 1. In Fig. 1, / is the length, w is the width, p_
and p, are the substrates, and piezoelectric density, ¢ and t
are the substrates and piezoelectric thickness, and £ and »
are Young’s modulus for substrate and piezoelectric layers,
respectively. Also, the total cross-sectional area moment of
inertia is 7.
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=

Fig. 1. Schematic of a simple unimorph cantilever beam [6]

For beam cross-sections that are not symmetric about the
y-axis about either geometry or the variation of elasticity
modulus (£), a convenient method for treating bending
problems is provided by the concept of the transformed
section. If we choose an absolute value of £ as a reference
value and call it £ , then we can define a transformed
section and transformed width nw, where n=E /E . In this
case, we assume that Eref =EP. The line of action of an axial
force producing purely axial deformation passes through the
centroid of the transformed section. In the case of bending
without any axial force, the neutral axis passes through this
point. In this case, we assume that the location of the effective
centroid is determined by /4 (Figs. 2 and 3) [29].
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Fig. 2. cross-section of the unimorph cantilever [6]
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Fig. 3. transformed section of the unimorph cantilever [6]

h is applied for the determination of the neutral axis location:

. nt’ 421, +t,’ O
O 2mt, +2t,

The total cross-sectional area moment of inertia can be
expressed as:

N t, wt

3

wt t

I.=—— 4wt (h—2P +—2 4wt (L+t.—h)* (2
o s ( 2) 1 ,7(2 ,—h) (2

When applying a normal force F' at the free end of the
cantilever, the deflection function along the length direction
can be expressed as:

_ECGLoY) oy
= o =K Gl -x) 3)

P

z(x)

where K is a constant. The deflection function shown in Eq.
(3) can be used as the mode shape, for extracting the resonant
behavior of a unimorph cantilever beam with an arbitrary form
and width function w(x) [30]. So the vibration displacement
at each position is [6]:

z(x,7)=Kx >3l —x)sin(wr + 1)) @)

where K and y are constants, =27 is the angular frequency,
and 7 is the time.

The kinetic energy of the vibrant unimorph cantilever beam
can be written as [31]:

1 p! oz Y
T _Ej; (Pt +p,t, w (x )dx [E] )
:j;l%(psts +p,t, W (x)[wKx2(3l *)C)COS(WT*FO()rdX

The maximum kinetic energy of the vibrant unimorph
cantilever is obtained as [6]:

1 I
T =50, 0,0, )oK [ (X Gl —x)’de— (6)
The potential energy of the system can be written as [31]:
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So the maximum potential energy of the unimorph cantilever
is [6]:

E E

Vo =18K? Eq —h)’ B +—2(@, +t,—h) ===, —h)

3 3 3 3 (8)

1
2

><f0w(x)(lfx) dx
According to conservation law of mechanical energy, the
resonant frequency can be obtained as:

f(w(x»:%:

3 3 3 3
N3 [E@, —h) +ER+E, (t, +t,~h) —E, @t —h)
™ Pty +p,t, )

folw ()1 —x Ydx
j;/w )x*(31 —x)*dx

X

In the particular case, for a rectangular cantilever with length
[, width w, thicknesses ¢ and 1, mass densities p_and P, and
Young S modulus E_and E the deduced resonant frequency
is as:

B85 [E.(,—h) +ER +E, @ +1,—h) —E,(t, —h)
fmct - llﬂllz \j o, +pptp (10)
Asmentionedin[15], atypical trapezoidal V-shaped cantilever
is the result of the difference between one triangular tapered
cantilever and one trapezoidal tapered cantilever, with the
same thickness, with lengths /, and /,, and with widths w, and
w, respectively (Fig. 4 (a)). Because of the mirror symmetry
of V-shaped cantilever, it is only necessary to analyze half of
the geometry, which is a quadrilateral cantilever (Fig. 4 (b))
[6].

Evidently, for the quadrilateral cantilever beam, the width is
a piecewise-continuous function of x, that is:
X
/

ﬂ{l— al ]—ﬁ x €[0,7,]
2 1+1,) 2 ,
w(x)= (11)

w, X
A x e[l,1
z[ I, +1, Lo 11]

For simplifying calculations, it is reasonable to define the
width ratios a and b, and the length ratio ¢ of the trapezoidal
V-shaped cantilever beam:

W, Wo ly
a=—2b=—"c=—
w, w, l, (12)

By Substituting Egs. (11) and (12) into Eq. (9), the resonant
frequency formula of the trapezoidal cantilever beam is
obtained [6]:
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Fig. 4. Shape and dimension of (a) trapezoidal V-shaped
cantilever beam (b) half of the trapezoidal V-shaped cantilever
beam (c) triangular tapered cantilever beam [6]

Swx))=
J70 |E (t,—h) +E 0 +E, (¢, +t, —h)3 —E, (t,~h)
s ot F o, (13)

><\/ 3+a—6bc +4bc* —bc’
49 4 250a —84bc’ + 40bc® —5bc’

In order to represent the relationship between the resonant
frequency and the ratios a, b and ¢, a characteristic function
regarding a, b and ¢ can be defined as mentioned in [15,27]

(@.b.c) = \] 3+a—6bc +4bc? —bc?
S0 TN 49 1 2500 — 84be® 1 40bc® —5he” (14)
€[0,11,6 €[0,1],c €[0,1]

Hence, the resonant frequency of unimorph trapezoidal
V-shaped cantilever beam is:

Sw)=
@\/Es(ts_h) HEICHE (1t ) B ) (1)
wl, Py +p,t,

For a unimorph triangular tapered cantilever, =0 and the
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resonant frequency is:

Swx)=

E(t.—h)V +EI +E “hV —E (r.—h)
@\/ s(ts ) + s + I’(t»‘ +tl’ ) 1’<t»‘ )g(a=0,b,c) (16)
wl, Pty +pt,

In other words, characteristic function will be summarized as:

3—6bc +4bc* —bc?
gb,c)= 5 3 7
49 —84bc” +40bc” — Sbc
b €[0,1],c €[0,1]

(17

In the particular case that tp:O and a=0, the resonant
frequency formulation for a simple triangular cantilever
beam is obtained that is by that extracted in [28].

As shown in Fig. 5, g(a,b,c) reaches the maximum value
(\N3/7) = 0.2474, when a=0 and ¢=0 or ¢=1 or h=0. That
means if /=0 or /,=/, or w, =0, unimorph trapezoidal V-shaped
cantilever achieves highest resonant frequency. For w,=0 and
1,=0 or w,=0, the unimorph trapezoidal V-shaped cantilever
beam turns into a unimorph triangular tapered cantilever beam
as shown in Fig. 4 (c). When w,=0 and /,=/ , the unimorph
V-shaped cantilever turns into two side by side unimorph
tapered cantilever beams, though, this particular uncommon
form is difficult to accomplish. Therefore, unimorph tapered
cantilever beam that is easy for micro-fabrication and is a
special kind of unimorph V-shaped cantilever beam can reach
the maximum resonant frequency. In other words, it has the
highest sensitivity. It is notable that the behavior of g(a,b,c)
in Fig. 5 is such as that obtained in [6, 32].

3- The potential electrical response of a unimorph
piezoelectric cantilever

Because of the low thickness of the beam, Euler-Bernoulli
theory is considered in deriving the mathematical modeling
of the structure. The governing equation of motion for a beam
embedded by a single piezoelectric layer under the influence
of base excitation is as follows [33]:

0.8

82M()zc,t)+8_22[csl(x)83z(2x,t)] c 9z (x,1)
Ox Ox Ox “0t ot
. , (18)
) ZZED) ey, 60 — L) 02D
ot ot

where M(x,?) is the internal moment, z(x,) is the transverse
displacement of the neutral axis, z,(x,?) is the base excitation
displacement, C and C are equivalent strain rate and viscous
air damping coefficient, /(x) is the area moment of inertia,
m(x) is the mass per unit length of the beam, and M, is the
tip mass. For this structure, the boundary conditions of the
system are described in Eq. (19), i.e., the cantilever is fixed at
x=0 and attached to a tip mass at the other end [19].

3
2(0.4) =0, 0z (x,t) —0.El 0 z(x3,t) _
Ox Ox (19)
2 2 3
M, 0 Z()Z’t),EI 0 z(xz,t) s 0 z(x,zt)
ot Ox Ox Ot

where / is the rotary inertia of the tip mass. Here it is assumed
to neglect the tip mass.

As the unimorph cantilever, consists of two layers with
different materials, m can be written as:
m=w (pt, +p,t,) (20)
where w is the width, ¢ is the thickness and p is the density.
Also, the subscripts s and p, are for substrate and piezoelectric
layers, respectively. Here, the width of the piezoelectric layer
is assumed to be the same as the width of the substrate layer,
denoted by w. The internal moment M(x,f), can be written as

[6]:

(t/2)+t,

(.2
M(x,t):—f olwydy (1)

)
S
owydy —
—(t,/2) ! y y (t,12)

By using the constitutive equation of piezoelectric and

(N
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Fig. 5. The function image of g(a=0,b,c) 6]
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isotropic material, the stress terms in Eq. (21) can be written
as follows:

o) =E g (x,t) (22)

=E, (g (x,t)—dyE; 1)) (23)

where o is the normal stress in the x-direction, ¢ is the
mechanical strain, d,, is the piezoelectric strain constant, and
E, is the applied electrical field. £, can be written regarding

voltage v(¢) as below [6]:

E\t)=—v(@)/h, (24)

The bending strain, ¢ at any level, z from the neutral axis can
be expressed as below:

0z, (x,t)
Y Ox?

Employing Egs. (22) to (23) and (25) into Eq. (21), one may
obtain:

g =- (25)

M (v.t) = EI (x) ,@,( 92 O) ey 1) (26)
where:
n(x)= —%Epw (x)dy, (@, +1,) (27)

Using Heaviside step function, the internal moment can be
written as:

azz rel (x 3t)
Ox’ (28)
+n(x W (¢)[He(x)—He(x —1)]

M (x,t)=FEIl(x)

where / is the length of the beam, and the piezoelectric layer
covers all of this length. Employing Eq. (28) into Eq. (18)
yields:

’ re](x t) m(x t)
axziE[( ) ox? a CI( ) dx 20t
+Caazml(x9t)+m(x)aZrel(zx!t)

ot ot (29)
[n( )V(t)ldé(x) d&(;—z)”
X
ey, s -1 )

The constitutive equation of piezoelectric materials that
relates the electrical and mechanical terms is given by:

D3(x,t):d310'1(x,t)+53T3E3(t) (30)

Here D (x,?) is the electrical displacement, o (x,7) is the normal
stress in the x-direction and ¢,,” is the permittivity at constant

stress. The permittivity at constant strain ¢ ° replaces the
permittivity component through ¢, 5= ¢ 7 - d, E. . Thus Eq.
(30) can be rewritten as [6]:

t, Dz, (x,t) vt
D3(X,t):—d3]Ep [?+tp]T—€33T (31)
Integrating the electrical displacement over the piezoelectric
area leads to generated electric charge in the piezoelectric

layer, ¢(?), as below:

q(t):f53.ﬁ dA =

6zm,(x 1) v, (32)

p

-I. [dﬂ( +1,)E, W (x) el )=

where 7 is unit outward standard and D is the vector of
electric displacement. Value of the current, i(¢) is obtained
by differentiating electrical charge over time. Therefore, the
voltage across the resistive load can be obtained as follows:

V(O =R,i(t)=
R\ [ d“( + )Ew(x)azrdz(; Dl g +€§3Wt§x)l d;f’) (33)
Rearranging the Eq. (33) leads to:
t
)
dt e (x)IR,
(34)

t
d31(§+tp )Eptp

[P0,

esl =0 Ox 0t

Using the separation of variables technique leads to [6]:

z, ()= "W, (x)g, () (35)
k=1

Using Eq. (35), the integral term in Eq. (34) can be written as:

fx lazrel(x t)
x=0 Ox Ot

qu(t)f d’w (X) _dg, () dw, (x)|
gl dt dx

(36)

x =1

By simplifying Eq. (34) the ordinary differential equation of
piezoelectric energy harvester will be as follows:

dv (¢t t,
)

dkt
TRRETS V()—Zda 4. 1) (37)

where:

dyE ,h,(h, /2+h,,)dwk(x)|
€§3L d‘x |x:L

b (x)=—

(38%)

Eq. (37) can be solved for v(¢) by multiplying the following
integrating factor through the differential equation in order to
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bring the left-hand side under a common derivative:

v(e)=e’" (39)

where 7, is the circuit time constant and can be expressed by:

S
_ R el

tP

Combining Egs. (29) and (35) leads to:

(40)

¢

0 d2

;dxz
0 d2
@{dx—z

Fm)S W, ()

dzwk(x)
dx?

EI(x) q, ()

+ca}qu(’)
dt

dw, (x)
CcCI Z Tk
s (x) dx2

dzqk )
dt’
dé(x) déx —1)
dx  dx
0%z, (x,t)
ot*

(41)

2

+d
dx?

[n(x) ” )=

—[m(x)—i—M,(?(x —l)]

Integrating Eq. (41) over the length of the beam after
multiplying it by w (x) and using orthogonality condition
gives the equation of motion as follows:

d’q, (1)
dr?

_U()’Wk(x ym (x )dx +M w (1)

d
+2¢, w, qd"—f_T)jkazqk (T)+A\v (1) =
42
dZWb(x) ( )
dt?

where 4, represents the modal coupling term and is dependent
on the cantilever shape. For a rectangular cantilever it can be
obtained as:

A =Pt 43)

x =1

For an exponentially tapered cantilever, the modal coupling
term is expressed as below:

N :ﬁlwk(x)d;z<;)dx+d<wk§cx)n(x>>|

_dw, (x)n(x))
dx

x =0

44
dn(x) “4)

dn(x)
O dx dx

+2w

—w, (1)

x =0

)

Modal damping ratio can be estimated using half power
bandwidth method or based on the motion decay in viscous
damping. If beam oscillation is harmonic in time, base
motion, output voltage, and electrical charge can be written
as z,=Y e, v(t)=V e and q(1)=Q,e*" respectively. Thus
q,(1) becomes:

x =1
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where i is the imaginary number sign and o is the driving
frequency. Also substituting v(£)=V e in Eq. (37) can lead
to:

[1 +iwr, -

iwt > dq (t)
2R
k=1

c

Differentiating Eq. (45) and substituting in Eq. (46) can lead
to the voltage amplitude across the resistance:

T

c

[1+iw7—c ]Voeiwt

47

iwt
e

00

> 9

k=1

!
iw‘mszOj; w,(x)dx =\JV,

2 2 .
w, —w +2iw,w

So the ratio of the output voltage to the base acceleration or
voltage Frequency Response Function (FRF) is as below:

o IMwe, [j;lwk(x)dx]

v@e) ~ - 2w w (48)
WY e = iw, @, n 14iwr,
Hw' w42 uwuw T,

For a series connection of cantilever beams, the output
voltage is deduced as:

M, [folwk(x)dx]

v(t) :i w2 ww (49)
V™ o 7[5 10N I+iwr,
W 2 ww T,

where 7, is the number of cantilevers.

Similar equations can be used for series connection of
triangular cantilever energy harvesters using pizza scheme
(Fig. 6). The proposed layout is similar to the pizza slices,
except that the slices have triangular geometry. The pizza
scheme takes up very little space and produces more power
than the conventional layouts.
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Fig. 6. Pizza layout of the cantilever energy harvesters
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It is notable that for tapered cantilevers, some modifications
in the area moment of inertia, /(x), and the width function,
w(x), must be considered. In this case, the width function of
beam shape is defined as [25]:

w (0) (1 — ratio)

w(x)= (ratio XW (0))+ ]

(l —X ) (50)

4- Experiment setup

The samples are manufactured using the Aluminum substrate
and PZT-5H as the piezoelectric layer. The wires are soldered
to the piezoelectric layer in approximately 285 °C (Fig. 7).
The solder time should not exceed 2-3 seconds, in order to
minimize the heat transfer to the piezoelectric layer and thus
decrease the risk of the depolarization of the piezoceramic
material. There are some critical points in the soldering
procedure that is mentioned in [15].

sk

Fig. 7. Soldering the wires to the piezoelectric layer

After bonding the layers, the cantilever is fixed into the
designed fixture and are put into the shaker (Fig. 8) [34].
The piezoceramic is brittle, and the necessary attention must
be paid. The schematic diagram for the experimental study
is shown in Fig. 9. One rectangular and three triangular
specimens are manufactured for test and analysis.

Fig. 8. Cantilever energy harvester that is mounted on the
shaker

5- Experimental Results and analysis

For verification of the results, experimental work is done
for rectangular and triangular geometries. For a rectangular
cantilever, the analytical and experimental results are shown
in Figs. 10 and 11. As can be seen, there is a good agreement
between the experimental and theoretical results.

A similar comparison is done for three different triangular
cantilevers with different thicknesses of the substrate layers.

piezoelectric
beam

full bridge
rectifier

Fig. 9. Schematic diagram of the experimental setup
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Fig. 10. Comparison of the experimental and analytical results
for the rectangular cantilever energy harvester
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Fig. 11. Comparison of the experimental and analytical results

for the rectangular cantilever energy harvester using smoothed
experimental data

A pizza layout energy harvesting system can be used for
showing the triangular cantilevers. The thickness of the
substrate layers for three cantilevers (P1, P2, and P3) are
0.28, 0.30 and 0.33 mm, respectively. The length of the
rectangular and triangular cantilevers are equal to 7.24 cm.
Also, the width of the cantilevers in the base is similar to
each other and equal to 1.72 cm. The results for the first
triangular sample are shown in Figs. 12 and 13. The results
for the second triangular sample are shown in Figs. 14 and
15, and the results for the third sample are shown in Figs. 16
and 17. As can be seen, there is a good agreement between the
experimental and theoretical results for both of the resonance
frequency and output voltage. For a better comparison, the
smoothed data are shown. The notable point is that there are
many smoothing algorithms, and using different algorithms
leads to different results. So the most accurate comparison can
be obtained using the actual data. However, using smoothed
experimental data gives a better overview.
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for the 1% triangular cantilever energy harvester (P1) using
smoothed experimental data
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Fig. 14. Comparison of the experimental and analytical results
for the 2" triangular cantilever energy harvester (P2)
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The peak of the output voltage (experimentally and
analytically) are mentioned in Table 1. As can be seen, the
maximum relative error is less than 21.4%. The relative error
can be due to human and equipment errors. However, since
the theoretical values are less than the experimental ones, one
of the essential parts of the errors may be due to energy loss.

Table 1. Maximum experimental and analytical output voltage
and the relative error (%)

1t sample 2" sample 3" sample
(P1) (P2) (P3)
Experimental maximum 0.132 0.160 0.164
output voltage
Analytical maximum 0.168 0.183 0.187
output voltage
Relative error (%) 21.4 12.6 12.3

For widening the bandwidth of the energy harvester
structure, the triangular cantilevers are connected with a
series connection. As can be expected, the output voltages
are added together. For a comparison between the output
of the separated cantilevers and the connected one, the
voltages of cantilever energy harvesters are added together
and plotted with the connected structure. The results are
shown in Fig. 18, and the relative error is less than 6%.
Multiple cantilevers or cantilever arrays integrated into one
energy harvesting device (a pizza form energy harvester) can
easily achieve continuous wide bandwidth if the geometric
parameters of the harvester are appropriately selected [35].
Using a cantilever array method, some close modes and
thus more full bandwidth could be achieved as compared
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to a single-beam harvester that its operation bandwidth is
usually narrow. Both the bandwidth and the voltage peaks
are increased by using the cantilever array method, and using
pizza form can decrease the volume of the energy harvester.
The three voltage peaks are coupled together in the 3-Degree-
Of-Freedom (DOF) harvester to form a relatively broad
bandwidth. The bandwidth of each cantilever alone is about
4.1 Hz, 4.8 Hz, and 9.7 Hz, respectively. The three modes
could be designed to be very close to each other, and 443%
increase in bandwidth (bandwidth is 22.3 Hz) at a voltage
level of 0.1 V was achieved as compared to a conventional
Single Degree-Of-Freedom (SDOF) device in the experiment
(first triangular cantilever).
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Fig. 18. Comparison of the experimental and analytical results
for the series connection of the triangular cantilever energy
harvesters

6- Conclusion

This paper deduces a highly precise explicit formula for
approximating the fundamental resonant frequency of
unimorph trapezoidal V-shaped cantilevers based on the
Rayleigh-Ritz method. The analytical results are in a good
agreement with the experimental results, and the relative
error is negligible. In addition to determining the resonant
frequency of unimorph trapezoidal V-shaped cantilevers
of any material and geometrical properties, the presented
resonant frequency formula can be used for design and
optimization of unimorph trapezoidal V-shaped cantilever
energy harvesters which are considered among the best and
highest performance. The shape of the cantilever in the first
mode of vibration is not precisely the same as the static
deflection profile. So the natural frequency estimates are
slightly different from the simulation values. The formula
presented for calculating natural frequency of unimorph
tapered cantilevers is a simple, relatively precise and
practical formula for providing design guidelines. Also, the
output voltage of the unimorph piezoelectric cantilever beam
is formulated, and the formula is validated by experimental
results. Experimental results demonstrate that under the
same loading, material and geometrical conditions, triangular
cantilever beams are more efficient than rectangular ones. It
turns out that the shape can have a significant effect on the
output voltage and therefore maximum output power density.
Combining the triangular shape energy harvesters and multi-
modal energy harvester design, can provide the highest
power density and consequently optimized design schemes.
The base of the design is to closing the resonance frequencies
of the cantilever array to create a wideband energy harvester
system. Because of the unique phenomenon, the proposed
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harvester is shown to be very useful in broadening the
operation bandwidth with three adjacent voltage peaks. The
results of this study can provide design guidance toward
fabricating high power and wideband piezoelectric energy
harvesters.
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