@

AUT JOURNAL OF
MECHANICAL
ENCINEERING

AUT Journal of Mechanical Engineering

AUT J. Mech. Eng., 3(1) (2019) 63-76
DOI: 10.22060/ajme.2018.14453.5728

Analytical Solution and Optimization for Energy Harvesting from Nonlinear Vibration
of Magneto- Electro- Elastic Plate

H. Shorakaei', A.R. Shooshtari', H.R. Karami?

! Department of Mechanical Engineering, Faculty of Engineering, Bu-Ali Sina University, Hamedan, Iran
2 Department of Electrical Engineering, Faculty of Engineering, Bu-Ali Sina University, Hamedan, Iran

ABSTRACT: In the present paper, a mathematical model has been provided for a Magneto-Electro-
Elastic (MEE) plate to investigate its energy harvesting in nonlinear transverse vibration. The nonlinear
equations of motion of an MEE plate have been used based on the Kirchhoff plate theory. These
equations have been reduced to an ordinary differential equation using the Airy stress function and
Galerkin Method. Also, two other equations have been made using electrical and magnetic aspects of
the structure. Then, the equivalent electrical and magnetic circuit of the structure is developed. There
are three ordinary differential equations that need to be solved together. A closed-form solution has been
obtained for the output power of the harvester using the method of multiple scales. The obtained results
are compared with those of FEM and a good agreement observed between the results of displacement
and voltage. By introducing an analytical relation for the power as a cost function, the Genetic Algorithm
method is applied to optimize the best parameters of the harvester which gives the maximum power.
The effect of various parameters of the harvester, such as dimension and thickness, on the power is
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investigated and the results are discussed.

Optimization

1- Introduction

Harvesting of the energy from the vibration of structures, as a
harmful phenomenon in the structural engineering, is one of
the interesting subjects for scientists and researchers. There
are different methods to harvest energy from vibration, but
one of the main methods is to use smart materials, such as
piezoelectric. One of the innovative smart materials which can
convert the mechanical strains of the structures in electrical
and magnetic fields, is the multiphase material of Magneto-
Electro-Elastic (MEE). Based on this important property, this
kind of smart materials can give more efficiency in energy
harvesting. Deriving an analytical model for the Smart
Materials Structures (SMS) can be helpful in designing smart
devices. SMS can be used as an energy generator, which
convert the environment energy into electric energy with
more applications. The environment energy can be modeled
as a harmonic excitation force, and the structure reacts as a
vibration system.

In the literature, Zhang et al. [1] analyzed Magneto-Electric
(ME) materials theoretically for collecting magnetic energy
and converting it to electric energy. They also studied
time-harmonic vibrations of a laminated ME plate of
piezoelectric and piezomagnetic layers driven by a magnetic
field. Rupp et al. [2] presented a topology optimization of
energy harvesting devices using piezoelectric materials
under the Finite Element Model (FEM). In this paper, both
elastic materials and piezoelectric materials are considered
for the design of energy harvesting devices under the
topology optimization formulation. Junior et al. [3] showed
an electromechanical Finite Element (FE) plate model for
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piezoelectric energy harvesting. Since piezoelectric energy
harvesters was designed and manufactured as thin structures,
the classical plate theory was employed in the formulation.
Erturk et al. [4] introduced a piezomagnetoelastic device for
substantial enhancement of piezoelectric power generation
in vibration energy harvesting. Dai et al. [5] presented an
energy harvester to convert ambient mechanical vibration
into electrical energy employing the Terfenol-D/PZT/
Terfenol-D laminate ME transducer. An analytical model is
developed by them to analyze the nonlinear vibration and
electrical-output performances of the harvester. They also
fabricated and tested a prototype. Sun and Kim [6] concerned
with the development of a systematic design method of
MEE composites with maximized conversion of mechanical
energy to electric and/or magnetic energy. They assumed a
composite plate as simply supported and discretized it into a
number of laminates for analysis using a semi-analytic finite
element method. An equivalent single-layer model for the
free vibration analysis of smart laminated plates is presented
by Milazzo and Orlando [7]. The Excitation-Induced Stability
(EIS) phenomenon in a harmonically excited bistable Duffing
oscillator is studied by Wu et al. [8]. Design of plate structures
for vibration energy harvesting from two or more vibration
modes has been investigated by El-Hebeary et al. [9].
Stanton et al. [10] applied the method of harmonic balance
to analytically predict the existence, stability, and influence
of parameter variations on the Intrawell and interwell
oscillations of bistable piezoelectric inertial generator. Talleb
and Ren [11] presented the finite element analysis of a ME
energy harvester using a laminate composite constituted of
laminated piezoelectric and magnetostrictive layers. In this



H. Shorakaei et al., AUT J. Mech. Eng., 3(1) (2019) 63-76, DOI: 10.22060/ajme.2018.14453.5728

study, both the nonlinear characteristics of the material and
the dependency on the load impedance are considered. Ke and
Wang [12] investigated the free vibration of MEE nanobeams
based on the nonlocal theory of elasticity and Timoshenko
beam theory. In this study, the MEE nanobeam is subjected
to the external electric potential, magnetic potential and
uniform temperature rise. Razavi and Shooshtari [13] studied
nonlinear free vibration of symmetric magneto-electro-elastic
laminated rectangular plates with simply supported boundary
condition. They used the first order shear deformation theory,
and considering the von Karman’s nonlinear strains obtained
the equations of motion, whereas Maxwell equations for
electrostatics and magnetostatics are used to model the
electrical and magnetic behavior of the plate. Shirbani et
al. [14] proposed a coupled magneto-electro-mechanical
(MEM) lumped parameter model for the response of the
proposed MEE energy harvesting systems under base
excitation. Shorakaei and Shooshtari [15] studied analytical
solution and energy harvesting from nonlinear vibration of
an asymmetric bimorph piezoelectric plate and optimized the
plate parameters by genetic algorithm.

In this paper, an analytical nonlinear model for a bimorph
MEE plate is developed for the first time. The equivalent
electrical and magnetic circuits are presented for the provided
model. The nonlinear governing equations based on the
Kirchhoff’s plate theory and von-Karman’s nonlinear strains
are solved using multiple scales method, simultaneously
with two electromagnetic coupled equations. The analytical
relations for electrical voltage, induced current and output
power are obtained, as well. By assuming power relation as
cost function, some parameters of the harvester are optimized
using genetic algorithm, in that way the output power can
reach to maximum value.

2- Governing Equation

Fig. 1 shows a MEE plate connected to a resistance load R.
This structure includes two MEE layers with equal thickness
in top and bottom of the substructure and it is excited by a
harmonic force. In order to convert the magnetic field into
electrical current, two coils have been considered in two
side of the structure however they have not been shown in
the schematic picture. The parameters ¢ and b are width
and length of the plate and /_and &, are the thickness of the
substructure and MEE layers, respectively. The origin of the
coordinate system is considered to be in one of the corners
of the plate’s mid-plane. The plate is considered to be thin
with length to thickness ratio a/A>20 , so that the classical
plate theory can be used [16]. In the recent equation h is the
thickness of the plate and is defined h=2h +h_.

2- 1- Stain and displacement field
Based on Kirchhoff theory, following displacement field is
used

u(x,y,z)=u,(x,y,z)-z 6;10

ow,
oy

v(x,y,z)zvo(x,y,z)—z (1)

w(x,y,z)=w,(x,y.z)
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Fig. 1. Schematic of the magnetoelectroelastic plate connected
to the resistance load R.

where (u,,v,,w,) denotes the displacements of a material point
at (x,,0) in (x,),z) coordinate directions. (u,,v,) is associated
to the extensional deformation of the plate while w, denotes
the bending deflection [17]. For the given displacement field

in Eq. (1) the strains are defined as Eq. (2)

xx gxx gxx
el iz el
w7 ) %w wy (2)
0 1
gx)’ gx y gx y

Transverse strains in z direction is zero approximately [18].
The relations between strain and displacement are introduced
as following form

2
&’ =%+l(6woj 1 oW,
Toox 2\ ox 2% PN

2 2
g, =204 [ o G
Yy ay 2 ay Yy ay
£ _1 8u0+6v0+6w06‘w0 ¢ __alwo
Yo2ley ox ox oy Y oxoy

The introduced strains in Eq. (3) are known as von Karman
strains in which {&°} is membrane strain and {¢'} is bending
strain. One can see the von Karman strains terms are
nonlinear terms which are necessary for nonlinear analysis
of the harvesters.

Constituent equation of a MEE material layer is

(o} =[0]{z-anT }~[e}(£}-[g] {1} (@)
(Dy=[e] {e—aAT )} +[e]{E}+[d]{H} (4-b)
{By=[q] {s-aAT }+[a{E}+[u]{H} (4-c)

in which {o} {B} and {D}, are the vectors of stress, electric
displacement and magnetic flux density, respectively. {e},
{E} and {H} are strain, electric field and intensity of a
magnetic field vectors, respectively.
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[O], [€] and also [u] are coefficient matrices of elastic,
dielectric and permittivity, respectively. [e], [¢] and [d] are
the coefficient matrices of piezoelectric, piezomagnetic and
electromagnetic. {a} and AT are thermal expansion vector
and temperature change, respectively. Superscript 7' denotes
transpose of the matrix. The detailed of above matrices are

0, 0, 0 0 0 0
0=10, Oy 0 le=[0 0 0
0 0 O ey ey 0
e, 0 O a, 0 0 0
e=| 0 e, 0 |la=qa,r,q=] 0 0 0], (5)
0 0 €4 0 9y 9 O
d, 0 0 #y 0 0
d=|0 d, 0 [u=0 u O
0 0 d 0 0 4y

Here, a linear distribution of the electric and magnetic
potential is assumed in the thickness direction (z). The z
direction electric field, £_ is remarkable compared with the
other directions [19] and are defined as

E =_Ve (t) (6)

The relation of magnetic field intensity in the z direction, H,
relation is transformed into electric current by two inducers in
two sides of the structure in following form:

i 21\71m () o

z

In the above, v (7) is the generated voltage by electrical part
of the structure, N is the number of the coil, / is the length of
the coil and / (7) is the induced current by the magnetic field.

2- 2- Equations of motion

Using Hamilton’s principle, motion equations of a plate based
on classical theory and von-Karman strain-displacement
relation are obtained as [20]:

aN 2, 2
W (T g, Ta_p O[O0 (8-a)
ox oy ot ot~ \ ox
ON ON 2 2
Xy + Yy =[0 a VZO _Il 6_2 aM}O (g_b)
Ox oy ot ot~ \ oy

azMxx BZM-Y,V aZM}’)’ 8W 0 aW 0

2 2 +6(N xx N Xy j
Ox Ox Oy oy ox ox 8y

+8(NX},8W°+N ) q( xX,y, t)

oy ox w

I, — o % % -1, i 62w0+82w0
Yo\ ax oy ot ax? o oy

where g is external excitation, /_ for i=1,2,3 are mass moment
inertias by which introducing N as number of layers, and /, as
the vertical position of the layers, can be expressed as:

1, 1
Iy
Z iy e ©)
12
and N,,N N are in plane forces and M M, M, are

moments. fn plane forces and the moments can be expressed
as:

N XX O-.‘C.X

hiss
N, ZI o, 1dz (10)
N Xy Xy
M xx O-XX

L
M,v.v ZJ- O, zdz (11)
M Xy O-xy

By substituting Eqgs. (2) and (4)-a and (5) in Egs. (10) and
(11) one can obtain

Nxx All AIZ 0 g/‘”‘
N,t=|4, 4, 0 |J&),
ny 0 A66 Efy
(12)
Bll BIZ O g)tx N)Z-‘c N)fr N‘c,:lc
1 T e m
+/B, By, 0 Ey (~ Nyy - Nyy - Nyy
0 0 Bylle NI N N
xy - /
Mxx Bll BIZ 0 8:)‘
M, =B, B, 0 53y
Mxv 0 0 B66 80
) xy
_ 13)
D]l D]Z 0 g’lfx MVT;C Mxex Mx"jc
~ N 1 T e m
+ Dy Dy _0 &y (T Myy - Myy - Myy
0 0 Dgllg M M;, M)
Stress can be expressed by Eq. (4a), where
(4,.8,.D,) Zj ,1 [0](1z.2” (14)
Nk
(NTMT =[5 (12 )[0]{a} ATd: (15)
k=1~
N R
(N M} =3 [%(1L2)[e]{E }dz (16)
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v (17)

210 el

Since the structure is assumed to be symmetric in the z
direction, so B, =0, , where is a 3x3 zero matrix. As axial
deflection in x and y directions compared to z direction are so
small, the acceleration term in both in-plane motions (6°u, /0f*
and 0°v,/0f ) are neglected [21]. Also, the rotary inertia is

zero, because of symmetry. So, the Eq. (8) can be rewritten as

w o W) (18-a)
ox oy
ON, ON,
v, N (18-b)
ox oy
2 oM, oM
0 Mz” +2 22 L N, W, N, o,
Ox 0Ox Oy oy ox\ 7 oox Yooy
0 ow ow W
+—|N LN, —2 Yt
ay( oo TNy ay] g (x,y.0)=l,—=" (18-c)
o (0w, ow,
BRIV 2 T 2
ot~ \ ox oy

The in-plane forces are defined as Eq. (19), using an Airy
stress function ¢ and compatibility Eq. (20)

2
Nxx = a ¢;
oy
o’p
N, =< (19)
o’p
N_ =-
v Ox Oy
el +625fy ¢ [, ) _dw, 0w, 20)
oy’ ox’  oxoy Ox Oy x? oy’

Since the Eq. (20) is based on the strains, Egs. (12) and (13)
can be presented as Eq. (21)

& | 4B {N}

]|y ol
. (21)
4 Oss |[[NT+N°+N"

+ *T T e m

~(B") L, | M +M+M

where

A" =4" 00 0 100

B =-4"B=0,,,0,,=|0 0 0|,/,,=[0 1 0| ?2)

D* =D —-BA'B 0 0 0 0 0 1
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By substituting Egs. (19), (21) and (22) in Egs. (18) and (20),
following equations have been obtained

2 1 2.1

5 0 Eax = 0 gyy
12 +D22

a 2 aJ/Z

0 ﬂ@wo_ o’ ow,

8x6y oy’ ox  Oxdy Oy
o o’ 8w0+

oy OxoOy Ox

=1 62w0 I 6_2[62

_621
1162

(23)

ox? oy
62
oy’ j

+A, (NL+NE +N )+, (N +NG +N )]+

o o ax?

;.o L&
Z(AH ¢;+A12 ¢;
oy oy ox

& az¢ . 62¢
axZ[AIZ
o’

ay +AIZ 6 2
. & _ A W ’ _
“ ox oy | oxdy “lox oy
For deriving the Airy stress function and transverse deflection
of the plate, it is necessary to determine boundary conditions.
In this problem, simply supported with immovable edges have

been considered as boundary conditions. So, the boundary
conditions can be introduced as:

+ A (NL AN N2 )+ 45, (N +N G, +N )j (24)

o'w, Ow,
ox? oy’

+24

=0 atx =0,a
=0 aty=0,b

W,=v,=M_

:M,vy

=N,

iy (25)

Wy =Uy

According to the boundary conditions (Eq. (25)), w0 can be
defined as Eq. (26)

X yat)=2 W, ()F (x.y) =
n=lm=1

iiW sm (ﬂx jsin (Myj
-l a b

n=lm

(26)

where m and n are mode number and W (¢) indicates
transverse time variant of the plate. Eq. (25) can be presented
as following form

@7
J;nydy =0 atx =0,a

I:Nx),dx =0 aty=00b
By determining the boundary conditions (Eq. (27)), the Eq.

(24) can be solved now. So, airy function can be assigned by
two particular (4) and homogenous (¢,) solutions

p=9,+4 (28)
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where

_ 2nrw ~ 2mr
@, = ¢, cos Tx + @, cos Ty R

_ azszmzn (t) :

? e oW (1), (29)
bW, (1) 5
=——" 2 =W  (t).
¢2 32a2m2A1*1 ¢2 mn( )
and
@, :clxz+czy2
* 1 1 e 1 m
& =Gy (AW, (1) =N, =S NS =N (30)
€ =G (AW 2 (1) =N =N =N
in which
. 7t a’mPA -b*n’A’
GI(A )Z_E 2bz 1:2_ * *12
a (Alz AnAzz)
(31)

W7 a’miA, —b’n’4;,
Gz( )_ 16 a*b? (Al*z2 —A1*1A2*2)

For abbreviation, W _ (¢) is just indicated by W. Finally using
Galerkin method and known Airy stress function (Eq. (28)),
the Eq. (23) has been converted into an Ordinary Differential
Equations (ODE) as

ZW ()+Z (0)+ZW > +Z 0 ° (¢)

SZW (W ()20 (), ()+Zoq () =0 (32)
where Z, i=1-7, are constant coefficients which are shown in
appendix 4, and q is external excitation and ¥ is time variant
transverse displacement of the plate. The terms Z W(H)V (1)
and Z W()I (¢) are the coupling terms of electric voltage and
induced current.

When the structure is symmetric, the Z, is equal to zero.
Because the Eq. (32) has three unknown variables, V (?),
I (1) and W(1), two other equations are necessary to solve
them simultaneously. The other equations are extracted
from electrical and magnetic aspects of the behavior of the
structure.

2- 3- Electromagnetic modeling of the plate

The deflection of a magnetoelectroelastic structure leads to
produce electric and magnetic fields. The following presented
model is suggested to introduce the governing equations for
electrical and magnetic parts of a MEE harvester. According
to Eq. (4b), the strain of the plate leads to the electric
displacement. Since, the external circuit admittance across
the electrodes is 1/R , the output current can be obtained by
integral form of the Gauss law, [22]. According to The Gauss
law, the charge density over piezoelectric layers is equal to
electric displacement field between the electrodes. Electric
current could be explained by derivation of electric charge as

67

1, (t):j—tuDz.ndAj

where D_is electric displacement in the thickness direction of
the plate and # is external normal vector [23]. According to
Eq. (4b), D, can be expanded in below form

(33)

D. :e3l(£fx +tzel —ozlAT)+e32 (gfy +zg, —azAT)

(34)
+e, E, +d H .

Since, the positions of two MEE layers in z-direction are at
top and bottom of the plate, regarding the fact that z is the
distance between the mid-plane and the center of each MEE
layer (h, =(h +h)/2), by substituting Eq. (33) in Ohm law one
obtains:

LA [D..nda +L [D..nda L (35)

dt A Z:h ¢ dt A z :h g R

Substituting Eq. (34) in Eq. (35)

vc e g Ve (36)
dt dt R

where /_and C, are constant current source and capacitance,
respectively. Also dI /dt is voltage-controlled current source
and 7, is constant coefficient. According to Eq. (8), the
equivalent circuit of the electro-mechanical part of a MEE

harvester can be shown as Fig. 2.

L
Ce

dl,,
dt

R

Fig. 2. Equivalent circuit of the electro-mechanical part of a
MEE harvester.

In addition, the Eq. (4c) shows that the produced strain of the
plate leads to the magnetic flux density, as well. Regarding the
fact that the external circuit impedance across the electrodes
is R, the output voltage can be obtained by integration form
of Faraday’s law [24]. The produced voltage of magnetic part
of the harvester can be defined as below similar to Eq. (35),

v, ()= —j—IUBZ .ndAJ _57@32 .ndA]

In the above equations, B, is magnetic flux density in the
thickness direction of the plate. According to Eq. (4c), can
be expanded as

G37)

z=h z=hy

B, =q; (gfx +|Z

e —a,AT ) (38)

0
44, (ay}, +

z|e), AT )+dyE. + s H .
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Substituting Eq. (38) in Eq. (37) and using Ohm law, one can
obtain

+T, dL+Lm a, =RI,
dt dt

v (39)

L

where V, and L _ are constant voltage source and inductance,

respectlvely, and dV, /dt is current-controlled voltage source
and T, is constant coefficient. As a result, according to Eq.

(39), the equivalent circuit of the magneto-mechanical part of
a MEE harvester can be shown as Fig. 3.

dv
dt

Fig. 3. Equivalent circuit of the magneto-mechanical part of a
MEE harvester.

3- Solution of Coupled Equations

According to the previous section, we rewrite the ODE Egs.
(32) and (36) and (39), for transverse displacement and
electrical and magnetic fields of the structure, respectively in
the following form:

W (t)+ o'W (t)+2u'W(t)+s,W*(t)

s W(E)V, (£)+ s, ()L, (£)+5:0() =0, (40)
V, () + 10, () + V. (¢)+ LW (¢)+ LW ()W (¢)=0,  (41)
L(6)+ 3V, (€)+ JoL, (¢)+ LW (t)+ JW ()W (t)=0.  (42)

The Egs. (41) and (42) are the expanded form of the Egs. (36)
and (39), in which J, for j=1-8 are the constant coefficients
and the other coefficients in Eq. (40) are defined as

N

Z Z
_4’33 :_5'54 :_6‘55 =7 (43)
z, 7, 7,z

The parameter ' has been added to the Eq. (32) due to air
damping and is defined as Eq. (44), and ¢(f) is harmonic
excitation force that is defined by Eq. (45).

u'=¢o. (44)

q(t)=gq,cos(w,t). (45)

where {is damping coefficient. o, is excitation frequency and
q, is excitation amplitude distributed uniformly over the plate
surface.

By defining new dimensionless variables, Tand U
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T=wt (46)

W =hU (47)

By substituting derivative operators, D=d/dT and D’=d’/dT* ,
in the Egs. (41) and (42), and solving them with respect to V,

and / , one can obtain:
2
dZ+U+2,&d—U+§ZU3+§3UVe
dT dT (48)
+S,Ul, +S,q,cos(QT) =0
2
L
dT dT
d*U duY  dU
-P,| JJh—+ 0’| | — | +U
3{]3 dr? Js [(de dTZD
(49)
d du
-P hU—
6[1 i dT]
du davY | dU
-P| Jh—+J 0| | — | +U
7{]7 dT? Js [(de dTZD
2
o p Do py, -
dT dT
au d’u
+ +U
[]7 dr? Joh [(de dTZD
(50)
du
U—
o1 dT]
d*u dauvY | dU
|| —| +U
[]3 ]4 [(de deJ]
where
oy o2 ks, 2 s, 2 s, xS
H= ;Szzw22,53=w—32,54=a)—42,55 hz'Q_
_ (L)) JoJs  p_ 1
T (Y AL (RO VA S
P = ]z P = _]5 P = ]6
4 5 e )
60(1—]1]5) (1_]1]5) a)(l_]1]5)
B=—h
7
(1_]1]5)

The Egs. (48) to (50) will be solved using multiple time
scales method. Eq. (48) is rewritten as a standard Duffing
equation by assuming small parameter 4 [25]. All terms are
updated using booking parameter A for introducing weakly
nonlinearity [26], so the nonlinear mechanical Eq. (48) is
rewritten as follows
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2
d—Z+U
dT

dU (52)
+ﬂ(2,uﬁ+U3 +S,UV, +S,Ul_+S.q, cos(QT)) =0
in which
N ﬂ ~3 ~4 55

/1=52,ﬂ=;,53=7 54=7, 55:7 (53)

In case of primary resonance, the excitation frequency may
be rewritten as follows

Q=1+64 (54)

where o is detuning parameter. By defining time scales in Eq.
(55), derivative operators in Eq. (56) and U as Eq. (57)

T, =t
(55)
T, =t
d
D= | L _p b,
dT, dT
D, =— =D} +2AD,D
dT, dr’?
U=U,+AU, (57)

Applying above variables in Eqs. (49) and (50) and (52),
and separated the equations developing by the coefficients
of 2%and /', the solutions for U, ¥, and / are achieved. The
coefficients for A° is

DU, +U,=0 (58)

DV, +PD,V +PV, =
{30 (00 000
=P, (Jsh(DU, )+ 1,H°U, (D,U,)) (59)

=P J:h(D3U, )+ Tl (DU, )’ +U0(D§UO)))

DI, +PD,, +PI =

(]7 (D3U,)+ Jh?* (DU, ) +U0(D§U0)))
P, (1,h(DyU, ) + Jh*U, (DU, ))
PS(]3h o)+ Ik (D0, ) +U0(D§UO)))

(60)

The solution of Eq. (58) has been obtained as

Uy =4,(T,)e"™ +cc. (61)
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where A4 is the amplitude of U, depending on 7' and cc is
complex conjugate of prior terms in the equation. Substituting
Eq. (61) in Egs. (59) and (60) have been obtained as

DV, +PD,V +PBV, =P,Ae™ +P,Ale"" +cc (62)
DI, +PD,I, +P1I, =P,Ae"™ +P,Ae"™ +cc (63)
in which

:(Ps]s +P7]7)h_iP6]3h' p :_2(P3]4 +P7]8)h2 _iP6]4h2 (64)

Pw :(P3]7 +P5]3)h—iP4]7h, P11 :—2(133]8 +Psl4)h2 _iP4.]gh2
The transient solution of Egs. (62) and (63) can ignored and

steady state solution only considered which is obtained as:

V, =V’ =P,Ae" + P A" +cc (65)
I,=1"=P,Ae™ + P Ale"™ +cc. (66)
in which
P,((P,-1)-iP,) , _Pg((P2—4)—i2Pl)
12 7 2 ’ - 2
(P,-1) +P] (P,—4) +4pP;
(67)

_PRo((R-1)-iR) - Py((P,-4)-i2R)

o (B-1) P T (B—4) +4P?

14

By considering the coefficients of A' in Eq. (52) equal to zero,
the following equation can be obtained.

DU, +U, =-2D,D,U, —2uD,U,

+US +S,UV, +S,W,I_+S.q, (68)

Substituting Egs. (61) and (65) and (66) in Eq. (68) we have

DU, +U, =—(1+S,P,; +S,P;5 ) Ase’™

. - — S )
—(2i(D1A0)+ 2ipdy +3A2A, +S,ALA P +S, A AP, +5Tq°e'”“ ]e”v (69)

’(S3P12 +5,P, )AOZO +ee
Inthe above equations, the coefficient of ™ leads to instability.
Therefore, to obtain the stable solution, these coefficients

which are known as secular terms, must be omitted. As a
result, the solvability condition for this equation is

2i(D,Ay ) +2iuA, +3A A, + S, A AP

0
+S, AL AP, + 52q° e n (70)

By assuming the polar form for 4, as 4,=1/2k(T)e"™ , in
which £ is response amplitude and f8 is the phase of 4.
i(K'+ ik + k) + 8(3+53P13 £5,P ) + 250l _g (71

where k'and f' are the derivative of k and 8 with respect to T'.
Separating real and imaginary parts in Eq. (71)
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552% sin(6T, - B)

55,
2

k' +,uk+8(5 P, +S,Pg )k =

(72)
—kpB += (3+SP +8,Pg )k =

3013r 4% 15r COS(5_T1 _ﬂ)

the subscripts 7 and 7 indicate to the imaginary and real part of
related coefficients. Introducing y=(c7,-f) , and considering
steady state solution meaning k'=y'=0 , then

s
ik + = (531913, +5,P )k = 52% siny

73
a1 _ S (73)
ko-+8(3+SP13r+S Py )k = 5 cos7

Ultimately, the analytical frequency response functions for
the harvester have been obtained as

2
(ﬂk+;(5 P, +S,Pg K j

2 2
S
( k6 += (3+53P13,+541>15,)kj =[57q°j

(74)

ik +— (S P +5, P151)k
tanf =

—k6-+;(3+5 Py, +S,Pg, )k

Using the above equations, one can obtain the amplitude
of steady state solution of the structure in each frequency
of excitation. So the following electric voltage and induced
current from the harvester due to the vibration can be obtained
using Egs. (65) and (66) which are represented as

V, =Py, kcos((1+62)T — )= Pyksin((1+64)T - y)
;[Pmk cos(2((1+62)T 7))+ Py kK sin(2((1+62)T - 7)) |

I, =P, kcos(((1+62)T 7)) =P, ksin(((0+62)T - 7)) )

;[+P15rk2 cos(2((1+62)T ~7))+ P K*sin(2((1+62)T - 7)) |

The output power is also defined as the average summation

Start

Producing initial population
i (chromosomes) for optimization

of electrical and magnetic power in a linear period that is
defined as:

1 ;-1 14
— 2 2 e
Power = Py IO Z[le + R JdT (76)

4- Optimization

Using the analytical relations for electric voltage and induced
current, the power relation in Eq. (76) is considered as the
cost function, and implementing optimization applying
genetic algorithm method, one can find the optimum
parameters to find maximum harvested power. In this
study, a set of three parameters have been considered as a
chromosome and optimized by genetic algorithm. The
parameters are dimensionless ratio (g=a/h), load resistance
(R) and detuning parameter (o), while the cost function is
output power Eq. (76). The operators of genetic algorithm are
selection, crossover and mutation. In the selection operator,
some pair chromosomes have been chosen by considering
their cost, so that the more the cost of chromosome is the
more the probability of selecting is. After selecting the pair
chromosomes, these pair chromosomes, as parents, have been
combined together and constitute other pair chromosomes, as
children, while the parameters of the children have common
features with their parents. When the crossover operation
completes, a small percentage of new chromosomes has
been selected randomly for mutation operation. In mutation
operation, one of the parameters of the chromosome have been
selected randomly and changed. The steps of optimization are
detailed in [27, 28] and the its process is represented as Fig. 4.

5- Numerical Examples

Three numerical examples of energy harvesting of vibration of
a MEE plate are studied for first mode, m=n=1 . The examples
have been run in optimized and un-optimized ways. In the
first example, the validity of the model has been explored.
The other problem has been investigated by three different
materials: Barium Titanate (BaTiO,) as a piezoelectric,
Cobalt iron ferrite (CoFe,O,) as a piezomagnetic and the
composite of these two materials (50 percent BaTiO, — 50

A i
~ /
-~ Checking stop\\ Yes [ End \

condition

v

Evaluating the chromosomes
using developed cost function

Selecting proper chromosomes

i

Applying crossover and mutation
operators on the population

Fig. 4. The flowchart of the optimization
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percent CoFe,O,) as a magneto-electro-elastic. The results
are compared together. The properties of the smart materials
are listed in Table 1. Also, the properties of the substructure
is listed in Table 2.

5- 1- Verification of the model

Since the key purpose in this paper is to obtain an analytical
relation for output power of the nonlinear vibration of a MEE
plate, so it is necessary to validate the governing equation
of motion (Egs. (40) to (42)). For that reason, first, a FEM
model in COMSOL Multiphysics software has been produced
to compare it with numerical solution of the equations. In the
next step, the comparison has been implemented between
the results of numerical solution with those of multiple scale
solution for electric voltage and induced current (Eq. (75)) of
the next example.

5- 2- Finite element modeling

A three layered harvester, made from two Barium Titanate
(BaTiO,) material as a MEE layer at the top and bottom
of graphite/epoxy material as substructure layer, has been
designed in COMSOL Multiphysics software same as Fig.
1. Fig. 5 shows the FEM of the harvester. The required
parameters of the plate is listed in Table 3.

It must be noticed that the developed model by COMSOL
solves the problem in linear mode. That is, for comparing
COMSOL results with those of numerical solution, the terms
W3 and in Egs. (40) to (42) must be considered to zero.

Fig. 5. The modeled plate in COMSOL

5- 3- Results from FEM model

The distribution of stress on the plate is shown in Fig. 6.
The first mode deformation of the plate is observed in this
figure. Also, we can see that the center and the corners of
the plate are undergoing the biggest amount of stress. Fig.
7 shows the displacement of the center point of the plate in
the FE model and numerical solution (Runge—Kutta) of the
Egs. (40) to (42). It is seen that the period of the vibration has
good agreement with the FE model. The amplitude also has a
reliable precision. Also, Fig. 8 shows the extracted voltage of
the plate versus time, obtained by numerical solution of the
Egs. (40) to (42) and FEM. The extracted voltage accuracy
has the same trend as the center point displacement of the
plate.

Table 1. Smart materials properties [29]

Value
Symbol Unit Parameter
BaTiO,- CoFe O, BaTiO, CoFe,O,

p kg/m? Density 5550 5800 5300

a 1/°C Expansion coefficient 12.2e-6 11.3e-6 11e-6
0, N/m? Elasticity modulus 213e9 1669 286¢9
0, N/m? Elasticity modulus 113¢9 77¢9 173e9
O, N/m? Elasticity modulus 49.9¢9 43e9 45.3¢9
e, C/m? Piezoelectric coefficient -2.71 -4.4 0

e, C/m? Piezoelectric coefficient -2.71 -4.4 0

45, N/A.m Piezomagnetic coefficient 222 0 580
s N/A.m Piezomagnetic coefficient 222 0 580
€, C/V Dielectric modulus 6.37e-9 12.6e-9 0.093e-9
d,, s/m Electromagnetic coefficient 2750e-12 0 0
2 N/A? Permeability 83.9¢e-6 le-6 157

Table 2. Properties of Graphite/Epoxy [20]

Table 3. The parameters of the plate for verification.

Symbol  Unit Parameter Value Symbol Unit Name Value
P, kg/m? Density 1581 a m Plane dimension 0.01
a,, 1.67 e-7 b m Plane dimension 0.01
a,, 1/°C Thermal expansion coefficient 156 e-7 q, N/m? Excitation amplitude 10000
Ay 0 o, Hz Excitation frequency 90000
E 139.89¢9 h, mm Smart material thickness 0.0033
E,, N/m? Elasticity modulus 10.576e9 h, mm Substructure thickness 0.0133
G, 5.6537¢9 R Ohm Resistance load 50
v 1 Poisson’s ratio 0.24
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2 30 E 40 45 3
wit[]

Fig. 7. Displacement of the center point of the plate obtained
using numerical solution and FEM

The above figures show that the derived model (Egs. (40)
to (42)) has been validate by FEM, because two diagrams
confirm each other with proper accuracy.

5- 4- Optimized example

In this section, the effect of the parameters on the power, after
optimization, are investigated. The parameters (Eq. (77)) are
considered as chromosome of genetic algorithm and have
been optimized for each smart material, separately, so we
can compare the materials in their best versions. Since the
derivation of motion of plate is based on the Kirchhoff plate
theory, the side to thickness ratio, g, must be bigger than 20.
Also, the multiple time scale method, should be used when
side to thickness ratio is smaller than 50, because for the side
to thickness ratio bigger than 50 the solution is diverging. For
this purpose, the parameters are limited as Eq. (78)

C=[g R o] (77)
20<g<50
1<R<5x10* (78)
-10* <o <10*

where g=a/h is side to thickness ratio, R is load resistance,
o is detuning parameter that indicates the frequency and can
be calculated by 0=0/w . In this example, a=b=0.1m, and
q,=1000 N/m’.
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Fig. 8. Extracted voltage of the plate obtained using numerical
solution and FEM

The parameters of each structure are optimized by genetic
algorithm. The optimized parameters are listed as follows

[50 25 38] for CoFe,0,
C,=14[50 215 79] for BaTiO,
[50 13 55] for BaTi0,-CoFe,0,

(79)

The harvested power, during a linear period, for these
optimized parameters is listed in Table 4.

According to Eq. (78), the optimized dimensionless ratio for
the three structures are the same of on the upper bound.

By the way, according to Eq. (79), PZT needs more resistance
load to show its best version. Also, PZT needs more detuning
parameter (or more excitation frequency). Harvested power
for the structures, shown in Table 4, proves that PZM generates
the highest power in less time. The generated power by PZT
is more than MEE, while it needs more time to harvest such
value of the power.

Table 4. Harvested power according to parameters (50).

Smart Material Linez(lll;lls’)eriod PI(;I;Z:?SI:R:/)
CoFe 0, (PZM) 0.7919 1420
BaTiO, (PZT) 1.0441 699.01
BaTiO, - CoFe,0, (MEE) 0.913 586.5
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To verify the obtained analytical solutions, the diagrams
of electric voltage and induced current are compared with
relations of Eq. (75) and the numerical solution of Egs. (40)
to (42). The numerical solution uses Runge-Kutta method
and has been provided by MATLAB software. Figs. 9 and
10 show the comparison between steady state analytical (Eq.
(75)) and numerical solution of electrical voltage and induced
current, respectively, by the optimized parameters (Eq.
(79)) for the MEE material. It is obvious that the presented
analytical solution in Eq. (75) is almost equal to numerical
solution. In the previous example, the extracted model in Egs.
(40) to (42) are verified by FEM simulation, and here is shown
that multiple scale method works correctly for the presented
model of a magneto-electro-elastic structure. Therefore, we
can claim that the extracted model and solution for the MEE
structure are properly correct.

151
= = Analytical Solution
Numerica Solution ———
1 4 ™\
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Fig. 9. Numerical and analytical electrical voltage during a
linear period by optimized parameters of MEE in Eq. (79)
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Fig. 10. Numerical and analytical induced current during a
linear period by optimized parameters of MEE in Eq. (79)

According to optimized parameters in Eq. (79), the effect of
the optimized parameters on the power are investigated. Fig.
11 shows the effect of side to thickness ratio on the output
power when the other optimized parameters are constant. The
peak point for all structures occurs in the upper bound of the
limitation (Eq. (78)). The advantage of the PZM compared to
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the other structures is clear, here. Fig. 12 shows the effect of
the resistance on the output power. It is clear that the power
almost has same trend in different structures. All structures
have a peak and approach to zero in infinity except MEE
structure that has two peaks. It is seen that PZM has more
power in low values of the resistance, and PZT has more
power in high values of the resistance. Also, after passing
from the initial values of the resistance, the effect of the
resistance on the power in MEE is less than the other two,
and MEE curve changes more smoothly than the other two.

= = BaTiG2-CoFe04 (MEE)
= Cobalt Ferrite (PZM)
= === Barium Titanate (PZT)

Power [mW]

Fig. 11. Effect of dimensionless ratio on the power in optimized

mode
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===+ Barium Titanate (FZT)
MM
E
-]
E
[=T] X T
sy NG T T
) —
A e e T -
-
-
] . - ; : : :
[ 100 24 300 A " o
R [51]

Fig. 12. Effect of the resistance on the power

Figs. 13 and 14 show the effect of the detuning parameter on
the response amplitude and output power, respectively. We
can see that the effect of detuning parameter on the response
amplitude and power has the same trend in all kind of these
three smart materials. Maximum power occurs when response
amplitude is maximum. The backbone curve, the locus of
peak amplitudes that depend on the damping coefficient
value, is plotted in Fig. 13, as well.

6- Conclusion

In this paper, the nonlinear vibration energy harvesting from a
MEE plate was studied. The MEE constituent equations with
classical plate theory, von-Karman’s nonlinear strain field,
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Fig. 13. Diagram of the detuning parameter versus response
amplitude

Gauss’s law and Faraday’s law were considered to develop
the equations of motion of the harvester. Equivalent circuit
of electrical and magnetic part of the structure is introduced.
The analytical model is developed for a MEE vibration plate
for the first time. These ODEs are solved by Multiple Scale
method. After solving the equations, an analytical relation is
obtained for the output power in a linear period, as well as
the generated voltage by electrical part and induced current
by magnetic part of the structure. The output power is used as
cost function and the parameters of the structure are optimized
by genetic algorithm.

An example for verifying the model and an example for
illustrating the effectiveness of the developed model and
optimization of the model has been studied by three different
materials of PZT, PZM and MEE families. The extracted
voltage and the displacement of the center point of the plate are
verified by COMSOL with reliable accuracy. Optimization
of the structure is performed for mentioned materials and it
is observed that the optimal operation point for each material
is different. According to the optimal operation point, the
effect of different parameters on the power is studied and
is compared for the materials. In comparison of three smart
materials, it is found that if the structure made by these
materials, run at their best version (optimized), PZM harvests
the highest power while has the smaller linear period, as well,
then PZT harvests more power than MEE. According to the
diagram of the power against detuning parameter, PZM need
less frequency to reach its maximum performance compared
with MEE and specially PZT. Also, MEE load resistance is
smaller than PZT and PZM. In terms of the harvested power,
it is important to note that the structures have not the same
condition with respect to each other in all values of the
parameters. In some specific parameters, PZM generates
more power than MEE and PZT, and sometimes MEE and
PZT generate more power than PZM. The number and the
length of the coils have a remarkable impact on the extracted
power in MEE and especially in PZM. Also, the damping
coefficient play a significant role in the harvested power,
so using the correct value of damping coefficient helps to a
better conclusion.
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Fig. 14. Effect of the detuning parameter on the power

Appendix
The coefficients of the mechanical Eq. (32) are obtained as

Z = —ﬁ(lzﬂz (azm2 +bn? ) +1,a°b* )

Z,=— 2 11)3 (7[4 (l?;‘lb“n4 +2a*b*m*n? (51*2 +D;, ) + a4m452*2)
a
-r*a’b’ (nzszjx + mzazNjy +n*b°N” + mzazN)’,"y ))
Z,=0
4
. :—E%(mznz(gol +,)+Ga’m’ +G,b'n’) (80)
2
s —1%(azmze32 +b’n 631)
1 Nz*h
ey (azmzq32 +b’n q31)
L b mn=135,
;=4 mnxr
0, mn=2,4,6,
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