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Experimental and Numerical Study on the Accuracy of Residual Stress Measurement 
by Incremental Ring-Core Method
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ABSTRACT: In this study, the calibration constants of incremental step method have been determined by 
finite element analysis to calculate the residual stresses by the ring-core method. The calibration coefficients 
have been determined by simulation the uniaxial and biaxial loading. It is indicated that the loading approach 
has not effect on the calibration constants and they are unique. The uniaxial condition has been used to 
determine the calibration coefficients in the experimental method. To verify the determined constants, the 
calibration factors have been used to calculate the residual stresses in the case of uniform and non-uniform 
residual stresses. The axial and biaxial conditions have been studied and the results are in good accordance with 
applied stresses in simulations. In the uniaxial loading the measured residual stresses in finite element model 
completely accommodated by the applied stresses and presented formula and calibration constants determined 
the direction of the maximum principal stress by clearance less than 0.7%. Clearance of the measures stresses 
and applied stresses in the non-uniform case was about 1 %. An experimental test has been used to show the 
effectiveness of the obtained calibration coefficient by finite element analysis. Also, it is indicated that the 
results of the experimental test are satisfactory.
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1- Introduction
In the manufacturing of parts and equipment the residual 
stresses are important and this topic is considered nowadays. 
Control the residual stresses in the parts that are subjected 
to the cyclic loads is serious and in some manufacturing 
standard measurement the residual stresses are mandatory. 
For example tension residual stresses on the foot of the rails 
shall not exceed than 250 MPa [1].  There are many different 
methods for measuring the residual stresses such as hole-
drilling [2, 3], slitting method [4-7], and contour method [8, 
9], but each method has its property and could be used just in 
certain conditions. 
Residual stress measurement methods could be classified into 
three main categories named destructive, semi destructive 
and non-destructive. Stress could not be measured directly 
and usually is calculated by measuring the strain. The strains 
could be measured with electrical strain gages. To determine 
the residual stresses with strain gage at first the strain gage is 
bonded on the surface of the specimen, then the equilibrium 
of the residual stresses are disturbed by material removing 
process similar machining. As the result new equilibrium 
condition is made and some deformations will occur. The 
strain gages sense the strain due to the deformations and by 
using the appropriate mathematical relation the measured 
strains are used to measure the residual stresses.  Hole-drilling 
is known as the most famous semi-destructive method which 
used the strain gage to measure the residual stresses. This 
method is standardized by ASTM [10]. The ring-core method 
is another semi-destructive method and based on the same 
principal as the hole-drilling. The ring-core method allows 
for determination of residual stresses at high depth from the 
surface [11]. In ring-core method by cutting an annular groove 

in stressed specimen, the strains will be relaxed in the core of 
the ring. It is possible to estimate the residual stresses before 
cutting the annular groove by use the released strains on the 
surface of the core [12]. Sensing the stress change inside, the 
material by the sensor attached at the top of the component is 
not suitable by using the classic Hook´s law. Thus, there are 
three commonly used evaluation techniques for residual stress 
determination: incremental, differential and integral [13]. 
Each technique has its background and specific mathematical 
formula and all of them need to calibration coefficients. The 
calibration coefficients of each technique are unique and they 
are not related to each other. 
Calibration factors in each technique could be determined by 
experimental test and also by Finite Element (FE) analysis. 
In the determination of the calibration factors process a 
known residual stress field should be used. Uniaxial tension 
and compression field are the best conditions in the uniform 
case of the residual stresses and bending could be used in 
non-uniform residual stress distribution along the thickness 
of the specimen. Marisa and Peterson [14] used the bending 
condition to make known residual stress distribution. Keil 
[15] determined the calibration coefficients of incremental 
technique by using the tension test in a bulk specimen. 
Václavík et al. [16] used the FE analysis to determine the 
calibration coefficients, they also measured the residual 
stresses in a bulk forged shaft by the ring-core method. Civin 
and Vik [17] used FE model for determination of calibration 
coefficients and they also proposed a new set of calibration 
factors. 
The ring-core method is relatively common to measure the 
residual stresses, especially in case of bulk materials similar 
which manufactured by casting and forging. Although 
the theory of the ring core method is well-known, but 
the connection between experimental measurements and Corresponding author, E-mail: honarpishe@kashanu.ac.ir
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numerical studies is still not sufficient. Residual stress 
measurement by the ring-core method needs to adequate 
calibration coefficients. There is not still a unique set of 
calibration constants for each technique of the ring-core 
method.  Final element method is the most effective way 
to determine the calibration factors. In this research an 
appropriate numerical model has been studied to determine 
the calibration factors for the incremental technique of the 
ring-core method. Also the required formula to determine the 
calibration constants in the biaxial case have been introduced. 
Effectiveness of the constants have been studied by simulation 
the uniform and the non-uniform residual stress fields. The 
results have been very satisfactory in the case of the both 
uniform and non-uniform residual stresses. Moreover to the 
FE analysis an experimental test has been devised to indicate 
the effectiveness of the calibration constants. The results 
of the experimental tests are in good accordance with the 
expected results and conform the FE analysis. Therefore, the 
presented calibration constants could be used in experimental 
residual stress measurement by the ring core method as a pre-
requested constants. The presented constant improve the final 
results in comparing with the constants that presented by [15].

2- Principles of Incremental Ring-Core Method
In the ring-core method a small annular groove is made on the 
surface of the specimen and separates the central core of the 
surrounding material. This separation causes the release some 
parts of the residual stresses [15]. This method was innovated 
by Milberat [18] and modified by several other researchers. 
During the development of the ring-core method, a special 
strain rosette was made. This rosette is bonded on the surface 
of the specimen and the annular groove is made around it. 
The ring-core rosette is made of three strain gages and each 
gage is displaced by 45 degrees. Fig. 1 indicates the ring-core 
method strain rosette. 
As mentioned in the previous section, there are three main 
techniques to calculate the residual stresses by the ring-core 
method named differential, integral and incremental. By 
differential method, it is possible to make a rapid test and 
estimate the value of the residual stresses. This technique 
could be used as a workshop quality control test. In this 

technique residual stress are calculated by relieving strains 
that measured at two different depths and step’s difference ΔZ 
consist of two particular depths Zi and 2Zi, described by Eq. 
(1). Residual stresses are calculated by Eqs. (2) and (3) [20].
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In Eqs. (2) and (3), A and B are calibration coefficients and 
σ1 and σ2 are principal residual stresses. ∆ε1 and ∆ε2 are 
calculated by the Eqs. (4) and (5).
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The integral method commonly used for hole drilling method 
and its constants described in ASTM E837 standard [10]. 
Ajovalasit et al. [21] applied integral method to the ring-core.  
Barsanti et al. [22] determined the constants of integration-
method by finite element analysis. The integral method is 
presented by Eq. (6) and it is assumed that εx(H) relieved on 
the surface after milling the groove of depth H is the integral 
of infinitesimal strains due to the residual stresses σx(Z) acting 
in whole groove depth [21].
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Because this paper deals with the incremental method, it is 
described in detail. Residual stresses could be uniform or non 
uniform in plane of measurement and in the depth direction. 
On the surface of the specimen the plane stress condition 
exists and this is means that the stress perpendicular to the 
free surface is zero. Also, it is assumed that in the plane of 
measurement the magnitude of the residual stresses is constant 
or its variation is negligible. Thickness of the specimen could 
be thin of thick, but in the thin case just a uniform case of 
residual stresses should be considered. Principles of the ring 
core method and incremental technique is indicated in Fig. 2 
[15].
Layer removal, equal to dz, cause to release the residual 
stresses in this portion of the specimen and cause some 
deformation in the core. Strain gages will sense the strains on 
the core surface. If just the strain gage (a) is considered, it is 
possible to introduce the released strain εa on the surface of 
the core as a function of depth by Eq. (7) [15].
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In Eq. (7), ϵa
*(z) is the measured strain by the strain gage (a) in 

depth (Z). Ka(z) is the calibration constant related to direction 
(a) and depth (Z). By considering the uniaxial residual stress 
condition the Eq. (7) could be written in the form of the Eq. 
(8).Fig. 1. The ring-core strain rosette [19].
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In Eq. (8), E is the module of elasticity, K1(z) is the 
calibration constant related to direction (1) and depth (Z). It 
is well-known that stress σ1 makes the strains ε1=(1/E)σ1 and                        
ε2=(-ν/E)σ1. Therefore, it is possible to predict the measured 
strain by strain-gage2 which is perpendicular to the strain-
gage 1, by Eq. (9).

( ) ( )

( ) ( )

( ) ( ) ( )

( ) ( ) ( )

( ) ( ) ( )

( ) ( ) ( )

( ) ( )

( ) ( )

( ) ( ) ( ) ( ) ( )

1 1 2

2 2 1

1 1 12

2 2 22

0

*

1
1 1

2
2 1

1
1

1

2
2

1

1
1 1 2 2

2        1, 2,3,

1 ,

1

 

 

1

i i i i

Zi Zi

Zi Zi

H

x x

a
a a

Z Z Z Z Z mm

A B

A B

H F H Z z dz
E

d z
K z z

dz

d z
K z z

dz E

d z
K z z

dz E

d zEK z
dz

d zEK z
dz

d z
K z z K z z

dz E E

σ ε ε

σ ε ε

ε ε ε

ε ε ε

ε σ

ε

ε
σ

ε ν σ

ε
σ

ε
νσ

ε νσ σ

∆ = − = = …

= ∆ − ∆

= ∆ − ∆

∆ = −

∆ = −

=

= ∈

=

−
=

=

=
−

= −

∫

( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( )

2
1 2 2 1

1 2
1 1 22 2 2

1 2

2 1
2 1 22 2 2

1 2

1

 

 

d z
K z z K z z

dz E E

d z d zEz K z K z
K K dz dz

d z d zEz K z K z
K K dz dz

ε νσ σ

ε ε
σ υ

ν

ε ε
σ υ

ν

= −

 
= + −  

 
= + −  

(9)

In Eq. (9), K2(z) is the calibration constant related to direction 
(2) and depth (Z). By attention to mentioned notes, it is 
possible to determine the calibration constant by using the 
known principal direction. To determine the calibration 
constant K1(z) and K2(z) the uniaxial tension test or simulation 
the uniaxial condition could be considered. The calibration 
constants have been calculated by Eqs. (8) and (9) and 
presented by Eqs. (10) and (11).
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If σ2 applies in the principal direction (2), then the biaxial 
condition could be considered. In this condition the effect 
of σ2 should superimposed by σ1. Therefore, the measured 
strains in principal directions could be presented by Eqs. (12) 
and (13).
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It is possible to determine the magnitude of the principal 
residual stresses by arranging the Eqs. (12) and (13). Eqs (14) 
and (15) present the principal residual stresses.
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It is possible to extend the Eqs. (14) and (15) to any two 
perpendicular system. If “a” perpendicular to “c” and “b” 
perpendicular to “d” then the Eqs. (16) to (19) are confirmed.
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From the Mohr’s circle, the Eqs. (20) and (21) are easily 
verified.
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By substituting the Eqs. (20) and (21) to the Eqs. (16) to (19), 
the Eqs. (22) and (23) will be created.
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Fig. 2. Used parameters in the incremental ring core method 
[15].
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In the ring-core strain rosette three strain gages exist, 
therefore, dεd in Eq. (21) could be written as a function of the 
three other variables.
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(24)

By combining the Eqs. (16) to (24), the stress in the direction 
of the three strain gage would be calculated by Eqs. (25) to 
(27).
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In the ring-core strain rosette, each gage is displaced by 45 
degrees. Therefore, two strain gages are perpendicular. It is 
considered that “a” and “c” are perpendicular and “b” is in 45 
degrees in a counter-clock wise direction respect to the “a”.  
A typical Mohr’s circle related to the ring-core strain rosette 
is indicated in Fig. 3. By attention to Fig. 3 the principal 
residual stresses and also direction between the gages “a” and 
the maximum principal residual stress are measured by Eqs. 
(28) and (29).
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3- Determination of the Calibration Constants
If the elastic constant of the material, E and υ and also the 
calibration coefficients K1(Z) and K2(Z) are known, the 
residual stresses could be calculated by the Eqs. (25) to (29). 
Therefore, determination the calibration coefficients are a 
pre-required step for experimental test. 
The calibration coefficients of the incremental method are 
determined by the Eqs. (10) and (11). In the calibration 
coefficient determination process, a known field of stress shall 
be used. It is possible to determine the calibration coefficients 
by experimental method and tension or compression test, but 
in real material always a value of residual stresses exist and 
could effect on the final value. Therefore, the finite element 
method is known as an appropriate way to determine the 
calibration constants. 
In this research the ABAQUS finite element package has 
been used to determine the calibration coefficient of the 
incremental method. The dimension of the finite element 
model considered as 50×50×25 mm. Due to the symmetry, 
only a quarter of the model has been modeled (25×25×25 
mm) and indicated in Fig. 4.

The material is considered as linear elastic and isotropic and 
the annular groove has been modeled in 20 equal increments 
with the size of ∆Z= 0.25mm.  Parameter of the finite element 
model indicated in the Table 1.
In the position of the strain rosette the fine mesh has been 
used. The mesh sizing study indicated that appropriate 
dimension for the mesh of the strain rosette portion is about 
0.7 mm.  Figs. 5 and 6 present the model after first and final 

Fig. 3. Mohr’s circle related to the ring-core strain rosette.

Fig. 4. Finite element model of the ring-core calibration.

parameters Value
Dimension (mm) 25 × 25 × 25

Annular groove (mm) Ø14-Ø18
Elasticity modulus (GPa) 200

Poison ratio 0.3
Uniaxial stress (MPa) 50

Element type C3D20
Gage length of  strain rosette (mm) 5

Table 1. Parameters of the FEM
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steps, respectively.
Stress contours indicate that, increase in the depth of the 
annular groove result to stress release in the core. To calculate 
the calibration coefficients, the strain values in principal 
directions have been measured. Fig. 7 indicates the released 
strain in the principal directions.

The calibration factors have been calculated by Eqs. (10) and 
(11), and the results have been indicated in Fig. 8.

The data in Fig. 8 have been obtained from the simulation of 
the tension test. In theory, it is possible to use the compression 
stress too. To compare the results between tension and 
compression stress, the calibration process has been done 
under 50 MPa compression stress. The released strains in 
principal directions have been indicated in Fig. 9, but the 
final results are exactly the same as data in Fig. 8.

The calibration constant should be unique and different 
loading condition should not affect them. In case of the 
biaxial stress the calibration coefficient could be calculated 
by Eqs. (30) and (31).
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Fig. 5. Model at the end of the first step.

Fig. 6. Model at the end of the final step.

Fig. 7. Released strain in principal directions in term of the 
annular groove depth.

Fig. 8. Calibration coefficients in term of the annular groove 
depth.

Fig. 9. Released strain in principal directions in term of the 
annular groove depth in the compression test.



M. A. Moazam and M. Honarpisheh, AUT J. Mech. Eng., 2(2) (2018) 137-148, DOI: 10.22060/ajme.2018.13954.5697

142

The calibration process in the biaxial condition has been 
simulated by σ1=80 MPa,and σ2=50 MPa and released strains 
in the principal directions have been indicated in Fig. 10. The 
calibration constants have been calculated by Eqs. (30) and 
(31) and the results have been indicated in Fig. 11.

4- Verification of the Calibration Coefficients
The calibration coefficients are valuable if they be verified. 
To verify the calibration coefficient, it is possible to use the 
experimental test as well as the finite element method. Similar 
to the determination of the calibration coefficient several 
parameters such as residual stresses exist in experimental 
tests that could effect on the final results. To prevent the 
unexpected problems, the finite element method has been 
used for verification the calibration constants.
In a first step the uniform residual stresses have been 
simulated. Parameters of the model are similar to what 
explained in the previous section. The uniaxial tensile stress 
with σ1=50 MPa,and σ2=0  have been considered. The 
released strains in the directions of the strain rosette (Fig. 2) 
have been measured and indicated Fig. 12. Several models 
with different dimensions have been used, but, there was not 

any significant change in the results. Simulation consists of 
21 steps. In the first step the loading is simulated and in the 
next 20 steps the depth of the annular groove increased by 
∆Z= 0.25mm.

The residual stresses corresponding to the directions of the 
strain rosette have been calculated by Eqs. (25) to (27) and 
the calibration constants. The results have been indicated in 
Fig. 13.

The principal residual stresses have been calculated by Eq. 
(28) and indicated in Fig. 14.
The angle between the gages “a” and the maximum principal 
residual stress have been calculated by Eq. (29) and indicated 
in Fig. 15.
In the uniform case of the residual stresses, the biaxial 
condition has been considered by σ1=80 MPa,and σ2=50 MPa. 
All of the model parameters except the loading condition 
were similar to the uniaxial condition. The released strains 
and appropriate residual stresses in strain rosette directions 
have been indicated in Figs. 16 and 17.
The principal residual stresses and also the angle between the 
gage “a” and the maximum principal residual stresses have 
been indicated in Fig. 18 and 19.

Fig. 10. Released strain in principal directions in term of the 
annular groove depth in the biaxial test.

Fig. 11. Calibration coefficients in term of the annular groove 
depth.

Fig. 12. Released strain in strain rosette directions, in term of 
the simulation steps (at each step the depth of annular grooves 

increase by 0.25mm).

Fig. 13. Calculated residual stresses in strain rosette directions, 
in term of the annular groove depth.
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Fig. 14. Calculated principal residual stresses in term of the 
annular groove depth.

Fig. 15. Angle between the gage “a” and the maximum principal 
residual stress in term of the annular groove depth.

Fig. 16. Released strain in strain rosette directions, in term of 
the simulation steps (in each step the depth of annular groove 

increase by 0.25mm) of the biaxial case.

Fig. 17. Calculated residual stresses in strain rosette directions, 
in term of the annular groove depth- The biaxial case.

Fig. 18. Calculated principal residual stresses in term of the 
annular groove depth- The biaxial case.

Fig. 19. Angle between the gage “a” and the maximum principal 
residual stress in term of the annular groove depth- The biaxial 

case.
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Addition to the uniform cases of the residual stresses, the 
uniaxial non-uniform case has been considered. The only 
change in the model was the loading. After simulation and 
extracting the data, the principal residual stresses and also the 
actual applied stresses along the gage “a” that is the loading 
direction, have been calculated and indicated in Fig. 20. The 
angle between the maximum principal residual stresses and 
the gage “a” has been indicated in Fig. 21.

5- Experimental Test
To verify the calibration constant an experimental test has 
been devised. In this test a plate is subjected to the uniaxial 
tension condition and then the ring-core method is used to 
measure the applied stress. Devised fixture, specimen, special 
cutter for mashing the annular groove and strain rosette for 
the ring-core method are indicated in Fig. 22.
The fixture is made from a piece of rail and after machining 
process heat treated to obtain 45 HRC hardness. The specimen 
is made of mild steel (S235JR EN 10025). The specimen 
have been annealed after machining and just slightly polished 
to make a clean surface.

The fixture is considered as a rigid body in comparing with 
the specimen. The specimen has been subjected to tensile 
stress by fasten the nuts. The value of tensile strains has 
been controlled by the strain gage which bonded along the 
direction of the applied strain. Then the ring-core process has 
been done in 20 equivalent steps (each depth step=0.25mm). 
Different parameters of the test have been indicated in the 
Table 2 and the test setup is indicated in Fig. 23.

After machining the annular groove and record the relived 
strain  in each step, the value of the stresses has been calculated 
according to the procedure of the ring-core method. The 
relived strains after filtering the noises have been indicated in 
Fig. 24. To calculate the stresses the calibration coefficients 
which obtained from the FE analysis have been used and Fig. 
25 shows the results. 
By attention to the test condition it is possible to calculate the 
calibration coefficients by using the data of  Fig. 24 and Eqs. 
(10) and (11). The calculated calibration constant and also, 
the calibration constant by FE analysis have been indicated 
in the Fig. 26.

6- Conclusions
This paper offers some information about the residual stress 
measurement by semi-destructive ring-core method. The 
basic formulas have been presented and a procedure for 
determining the calibration coefficient for certain material 
has been introduced. 
The calibration coefficients have been determined by 
simulation the uniaxial tension and compression tests. Also 
the required formula to determine the calibration constants 

Fig. 20. The maximum principal residual stresses and applied 
stresses in term of the annular groove depth- The non-uniform 

uniaxial case.

Fig. 21. Angle between the gage “a” and the maximum principal 
residual stress in term of the annular groove depth-The non-

uniform uniaxial case.

Fig. 22. Devised fixture, specimen, cutter and rosette for 
experimental test

parameters Value
Dimension of the specimen (mm) 100 × 100 × 15

Elasticity modulus (GPa) 200
Poison’s ratio 0.3

Uniaxial Applied strain 86e-6
Uniaxial stress (MPa) 17.2

Strain rosette TML-FRA-5-11
Annular groove (mm) Ø14-Ø18

Depth step (mm) 0.25
Final depth (mm) 5

Table 2. Parameters of the Experimental test
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in the biaxial case have been introduced. It is indicated that 
the calibration constants in uniaxial and biaxial conditions 
are the same. The calibration constants of both uniaxial and 
biaxial conditions have been indicated in the Table 3. This 
point shows that the calibration coefficients are independent 
of loading directions. 

The calibration constants have been verified by simulation 
the uniform and non-uniform cases of the residual stresses. 
In the case of the uniform residual stresses, it is indicated 
that the introduced formula and calibration coefficient could 
calculate the residual stress field. The conformity between the 
applied stress in finite element analysis and calculated stress 
was about 100%. Also the direction between the maximum 
principal residual stresses and gage “a” have been calculated 
by a clearance about ±0.7° that is excellent. The non-uniform 
case of residual stresses also have been considered and 
indicated that the maximum difference between the applied 
and calculated residual stresses was about 1%  that is very 
good. 
An experimental test has been devised to show the 
effectiveness the calculated calibration constant. In this test a 
uniform case of stresses is formed by creating uniaxial tensile 
strains in a plate. Comparing the calculated and applied 

Fig. 23. Setup of the experimental test

Fig. 24. Recorded strains in rosette in term of the annular 
groove depth

Fig. 25. Calculated principal residual stresses by the ring-core 
method and real applied stresses in the experimental test

Fig. 26. Calibration constants by FE analysis and experimental 
test
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stresses shows that the results of the ring-core method are 
acceptable.
The calculated calibration constant by experimental test 
shows a similar trend by the results of the FE analysis. 
This note confirms the FE analysis, but small variation in 
calibration constant cause to big mistakes in calculating 
stresses. Moreover, in experimental test several uncertainty 
effects on the results which are not controllable. Therefore 
the authors just present the FE analysis values. By attention 
to the results it is concluded that the presented calibration 
coefficients have enough accuracy to use as the pre-required 
constant in the incremental ring-core method
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