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ABSTRACT: In the present work, a simplified model of the uniaxial tensile test is developed for
orthotropic metallic sheets. This model is mainly established for tensile test analysis and calibration
of material parameters. The constitutive equations included in the model are based on an anisotropic
Gurson-Tvergaard-Needleman model combined with the Hill 1948 quadratic yield criterion. At first, a
detailed description of the constitutive equations along with their computer implementation is presented.
Then, by comparing the force and void evolution diagrams predicted by the model with numerical
and experimental results the efficiency and accuracy of the model are assessed. Finally, the effect of
different parameters on the traction force and evolution of voids during uniaxial tensile tests are studied.
The material parameters used in the calibration procedure are as follows: initial void volume fraction,
two adjusting parameters, nucleation of void volume fraction, standard deviation, mean value of void
nucleation strain, and sample orientation with respect to the rolling direction. The tests performed by the
authors prove the capability of the simplified model to describe accurately the mechanical response of
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1- Introduction

During straining of ductile metals voids grow and coalesce,
which result in softening and damage. The early observations
of this phenomenon go back to Tipper [1] and Puttick
[2]. McClintock [3] and Rice and Tracey [4] are the first
researchers who formulated a model to describe the damage
of ductile metals caused by voids growth. However, the well-
known model in this subject is the one developed by Gurson
[5]. He used an upper-bound approach to model the growth
of a spherical void inside a characteristic volume element.
Later, Gurson’s model [5] has been enhanced by Tvergaard
and Needleman [6, 7] in a formulation known as Gurson-
Tvergaard-Needleman (GTN) model. The use of the GTN
model has been further extended by its modification to
account for shear dominated loads [8] or plastic anisotropy
[9, 10].

One important aspect in the application of GTN models is the
calibration of its parameters. Different approaches have been
proposed for this purpose, a few of them being mentioned
here. Abendroth and Kuna [11] trained an artificial neural
network for predicting the load vs. displacement curve of the
small punch test. They were able to identify the GTN model
parameters by minimizing the error between the experimental
load vs. displacement curve and the one predicted by the
neural network function. Broggiato et al. [12] estimated the
GTN parameters using experimental data collected from
digital image processing of a notched specimen during
tensile test. Kami et al. [13] measured the values of the major
and minor limit strains at the surface of hydraulic bulge
test specimens at the onset of necking. They calculated the
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GTN model parameters by minimizing the error between
the experimental limit strains and the limit strains obtained
from numerical simulations of a hydraulic bulge test. In
another approach, a genetic algorithm optimization tool
was employed to find the GTN parameters such that the
error between numerical predictions and experimental
measurements of the force—displacement data for smooth
round bar and dog-bone specimens is minimized [14]. Of
course, a long list of literature related to the calibration of
the GTN model parameters could be presented. But they are
omitted for brevity.

The literature survey shows that the load-displacement data
obtained from the uniaxial tensile tests are widely used
for calibrating the GTN model parameters (see [14-16] for
example). In order to facilitate the application of GTN models,
especially for calibration purposes, a simplified model of
the uniaxial tensile test has been developed by the authors.
This model is able to predict the force-displacement curve
obtained in a uniaxial tensile test. The simplified model could
be programmed as a separate code and it is not required to
be implemented in any finite element program. Furthermore,
almost all researchers focused on the identification of a
reduced set of the GTN model parameters. However, the
simplified model could be used for calibrating a full set of
parameters affecting the material behavior up to the ultimate
strength point on the uniaxial stress-strain curve (i.e., all GTN
parameters except the critical void volume fraction, £, and
final void volume fraction, f,). The model developed in the
present paper is based on the work of Kami et al. [9].

The GTN constitutive equations based on Hill [17] anisotropic
yield criterion are presented in the next section. Then, the
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simplified model of the tensile test is formulated. Finally, the
model is used to show the effect of the initial void volume
fraction, f, adjusting parameters, g, and ¢,, nucleation void
volume fraction, f, standard deviation, S,, mean value of
void nucleation strain, e, , and sample orientation with
respect to the rolling direction on the evolution of force and
voids during loading.

2- Formulation of the Constitutive Model
In this section, the GTN constitutive equations based on Hill
[17] anisotropic yield criterion are described for the case of a
ductile porous sheet metal exhibiting plastic orthotropy. One
assumes that the sheet metal is initially flat, its orthotropy
frame being defined by the Rolling Direction (RD) (axis 1),
Transverse Direction (TD) (axis 2) and Normal Direction
(ND) (axis 3). The following symbols will denote macroscopic
strain and stress quantities:
— components of the logarithmic strain tensor separable into
elastic g[/(") = gﬂ_(@ and plastic 8[.].(‘") = 81.[.(") parts, i.e.,

(e) »)
£, =& +& (1)
— components of the Cauchy stress tensor 0,= o,
— hydrostatic pressure

p= _Gii /3 (2)

— Hill 1948 equivalent stress [17]

o= \/ O—gPu’k«O—k/ ’ (3)

where P, are components of a fourth-order tensor by means
of whlcfl the constitutive model approximates the plastic
orthotropy of the sheet metal. These material parameters are
subjected to the constraints

=P =P =P |, P =0 4)

ijk Jikt ij tk k tij iik ¢

In the case of orthotropic metallic sheets, Eq. (3) usually gets
the explicit form:

(o, -0,) +1,(c,-0,) +r1,(o,-0,) +

(r +1)r (5)
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where 7, , 7, and r, are experimental values of the Lankford
coefficient corresponding to the planar directions respectively
defined by the angles 8=0°, 45° and 90° with reference to RD.
It is not difficult to prove that Eq. (3) reduces to Eq. (5) if (see

also conditions (4))

P =0, except for

ijkl
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Two other strain/stress parameters will be associated to the
fully dense matrix material: e?” — equivalent plastic strain
(e”>0,e”>0) and Y — yield stress defined as a strictly
positive function of e” by means of the hardening law
Y=Y[e?]>0.

The elasticity of the sheet metal is described by the isotropic
Hooke’s law

E (e) v (e)
) &+ g 0 . @)
i i o i

1+v 1-2v

In this relationship, £ and v denote Young’s modulus and
Poisson’s ratio, respectively.

The plastic part of the constitutive model is based on the GTN
potential [6, 7]

7\ . 3p .
®©=|—]| +qf | 2cosh| ¢, — |-qf |[-1 (8
Y 2Y
where
I if I </,
1
ro=9 7 (s -1.). it f.o<f<f,, wihf =— (9)
1. 9,
Il i f=f,

is a porosity parameter depending on the void volume fraction
/- The quantities denoted as q,, ¢,, /., and f, in Egs. (8) and
(9) are material constants. The condition ® < 0 defines all the
admissible stress states. More precisely, @ < 0 in elastic states
and ® = 0 in the elastoplastic states.

The flow rule associated to the potential @ can be expressed
in the form

oD A=0, if® <0,
=1—, with | (10)
oo A20, if® =0,

b

U

or, if Egs. (8), (3) and (4) are taken into account,

— (pwol)

¢ =—¢ P o, +—e 6, (11)
o 3
where
. . 0D e . 0D
e i— e _ i, (12)
0o op
and
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o0 2o oD A 3p
— = — =-3qq,—sinh| —g,— |- (13)
0o Y op Y 2Y

Eq. (12) allow deducing the following consistency condition
that accompanies the constraint ® = 0 in the elastoplastic
states of the sheet metal [9]:

oo . oo

= (podev) —_(p.wol)
& + &

= 0. (14)

op oo

The evolution of the parameter e® is controlled by the
equivalent plastic work rule

(1 f)Y—(p) (15)

With the help of Egs. (11) and (2) to (4), Eq. (15) becomes

‘] ‘l

= (p.dev)
o¢ -pe

_(p ol )

=(1-s)re”. (16)

As for the parameter f, its time derivative cumulates the
growth of the existing voids /' and the nucleation of new
voids f™:

D (g) (n)

f=rs (17)

/® is directly related to the volumetric part of the plastic
strain rate tensor (see also Egs. (11) and (4)),

“G)F as)

while /® is a function of the equivalent plastic strain and its
time derivative:

f _A[—(p)]—(p). (19)

The multiplier A[e¢®’] on the right-hand side of Eq. (19) has
the expression

fw 1z _e_vm : . .
) Xy~ ’ itp <0,
Ale 1= S, A/ 27 2 S, (20)

0, ifp >0,

where f|, s, and e”’ are material constants. One may notice
that, accordlng to Egs. (19) and (20), / is different from zero
only in the hydrostatic traction states individualized by the
condition p < 0 (see Eq. (2)). The numerical implementation
of the abovementioned constitutive equations (GTN model
based on Hill’s quadratic yield stress) as a VUMAT routine is
described in Kami et al. [9].

3- Simplified Model of the Uniaxial Tensile Test

This section presents an efficient methodology that can be
used to calculate force vs. elongation diagrams for tensile
specimens separated along RD from metallic sheets exhibiting
plastic orthotropy. The procedure has been developed with
the aim of speeding up the identification of the porous
elastoplastic constitutive model. Its efficiency is ensured by
the following hypotheses that simplify the simulation of a

uniaxial tensile test:

e The specimen gauge is a region characterized by
uniformly distributed state parameters. In this material
volume, the plastic orthotropy frame remains coincident
with RD (axis 1), TD (axis 2) and ND (axis 3).

e The traction load induces a uniaxial stress state in the
gauge:

o-ij_ZO, ifi #lorj #1,

) @)

“ =0,ifi#j.

(p
& =0ande¢
ij ij

* The gauge is initially configured as a rectangular
parallelepiped and preserves this characteristic shape
during the tensile test (Fig. 1).

= 0

RD (1) F

¢

Thickness (3

Fig. 1. Gauge region of a tensile specimen separated from a
metallic sheet along RD and loaded by an axial force F|.

Of course, amodel based on such assumptions cannot describe
the necking and post-necking response of the specimen. Due
to this fact, its applicability is limited to the tensile states
characterized by void volume fractions taking values in the
range

0<f <f., (22)
for which Eq. (9) reduces to the form

fo=r. (23)

The gauge elongation and the corresponding axial force are
casily expressible as functions of the non-zero strain and
stress components:

0 0
L=t =1 [exp(g“)—l],
24
F=oc/tt =0c't't exp(e, +e,).
The following notations have been introduced in these
relationships (see Fig. 1): %/, °L, °I, are initial dimensions
of the gauge, /,, 1, [, are current dimensions of the gauge,
and F| is the current value of the axial force. Eq. (24) can
be exploited to calculate a point of the diagram force F, vs.
elongation /, - °/, whenever the state parameters o, ¢, and
&,,+ &, are available. The discussion below will focus on the
evaluation of g, ¢, and ¢,,+ €., using the porous elastoplastic
constitutive model particularized for the uniaxial tensile test:
* Additive decomposition of the longitudinal, transverse
and through-thickness logarithmic strains (see Egs. (1)
and (21)):
(e) (p)
e =& te,

i ii

(no sum) (25)
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* Isotropic Hooke’s law corresponding to the uniaxial
stress state defined by Eq. (21):

)
O

1 (26)

*  GTN potential resulted from Egs. (8), (2), (3), and (6),
when conditions (21) and (23) are taken into account:

(e (e) (e)
=Fe =-F¢_ |/v=—-Ec¢_ /v
1 11 22 33

qzo-]]

CD—(&) +q,f | 2cosh -qf [-1 27)

Y

*  Flow rule defined by Egs. (11), (3) and (6) together with
Eq. (21):

2Y

- (p) — (p.dev) 1;(p,wz)
811 =€ ¢ ’
3
-(p) ro ?(p.dev) lg;(p,m/)
22 ’ (28)
r +1 3
0
. (p) l — (p.dev) — (pvol)
= _ I —
33
r +1 3

*  Consistency condition that accompanies the constraint
®=0 in any elastoplastic state (deduced from Eqgs. (14),

(13), (2), (3), (6), (21), and (23)):

3 . q O-]l
-—q,4,/ sin
Y 2

0—11 — (pvol) — (p.dev)
& - | &

=0 (29)

2Y

*  Equivalent plastic work rule given by Egs. (16), (2), (3),
(6), and (21):

611 — (p.dev) 1;(1”‘0!)
| & +—¢
Y 3

*  Law that controls the change of the void volume fraction
(obtained from Egs. (17) to (20), (2), and (21), bearing
in mind that p=-¢, /3 < 0 is a property of all inelastic

states):
1, 1 _e—v(p) j|

—
. rre e
RIS e E . S R
S, 2z 2 S,

The simulation of the uniaxial tensile test consists in a
sequence of small time increments #—¢+At. The configuration
of the gauge corresponding to the moment ¢ is a reference
state, its parameters ‘o, , ‘¢, ‘€,,, ‘€, e® and ’f being known
quantities. Together with this data, the increment of the
longitudinal logarithmic strain:

(30)

}(w)?m

——(p)
e .

31

t+At

s
lgll - '[' glldr

(32)

is also given as input. The objective of each simulation step

consists in evaluating the current state parameters ““o,,
HA[&‘“, HA[E,‘D, 1+A1833, r+Aré(p) and z+Af The Value Of z+At0.” can be

determined using incremental forms of Egs. (26) and (25) in
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combination with Egs. (32) and (28):

1
t+At _t+A (e) t+At — (p.dev) _t+At—(p,val)
no 9 _El: € + € > (33)
where
t+At (e) _t t+At
TR +E (e (34
t+At — (p.dev) t+At —(p.dev)
L€ = 3 At,
(35)
r+AtE(]),\'Ul) :HAt g;(p,vol)At.

t

Eq. (34) defines a stress level that would occur in the current
configuration of the gauge if the incremental logarithmic
strain “*' ¢ were purely elastic. In practice, “*o | is the first
quantity that must be evaluated. When "¢ is available,
Eq. (27) allows calculating the trial GTN function:

l+/\lo_(e)
t+AL (e) 11
LA o e |
t—(p
Y |: e

+q/'f 2COShM*qllf -1 (36)
] g [’e—"”]

If #4@© < 0, the hypothesis of an elastic strain increment is
correct. In such a situation, the current state parameters are
immediately evaluable using already known quantities (see
also Egs. (26) and (32)):

t+At _t+At (e)

11 m 2

t+At t t+At

t+AL t+AL t

22 33

it Yo <0. (37)

t+A—(p) _t —(p)
e = e

t+At t
S =7,

If @@ > (), the gauge evolves through elastoplastic states,
the increments “* ") and *** g»**) on the right-hand side
of Eq. (33) being two extra unknowns. In this case, it is
convenient to manipulate Eq. (33) under the normalized form

E 1+Al — (p.dev) 1 t+At— (p vol)
t+Al —(p) |: ’g ! t7 tg ! > (38)
Y[ e :| 3

1+AL A _t+AL A (e)

11 11

where

t+At A
11

= ey [, (39)

t4Ar Al(le) Y o_:le) % [[+Are—(p):|’ (40)
Due to the inelastic character of the current state, Eq. (38)
must be accompanied by the following constraints:

»  First consistency condition “® = 0, i.e., (see Egs. (27)

and (39))
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t+At &]21 +q] t+Atf {2 COS.(%HNOA'” j _ql t+Atf :| _ 1 (41)

* Incremental form of the second consistency condition
defined by Eq. (29) together with Egs. (35) and (39):

t+At A t+At— (pvol)
11 ¢

t+At
3 q
t+At . 2 t+Ar A — (pdev) _
-—q,4q, [ sin o, & =0
2 2 .

* Incremental form of the equivalent plastic work rule
defined by Eq. (30), the backward Euler approximation:

(42)

t+Ate—(p) ! e—(p) _I+A e;(p)At, (43)
in combination with Egs. (35) and (39):
t+At A t+At — (p.dev) 1 t+At—(p yvol)
O-ll t € +- t 3
3 (44)

_ (1_1+Atf )[!+A!e—(p) _t e_(p):l

e Incremental form of the law that controls the change of
the void volume fraction obtained from Egs. (31), (35)
and (43):

1+Arf :tf +(1_t+A

t+At —(p)  —(p)
1 e —-e,
exXpN——| ————
2

N

!

s

)1+A1 ?(p,vu/) N fN
2
} I:/we—(p) K e_("):'.

It is not difficult to notice that Eqgs. (44) and (45) allow
expressing ' g4 and ** g as functions of the current
state parameters g, e and "V

(45)

N

1 1
t+At —(p.dev) 1+AL t+At —(p) t —(p) t+At—(pyol)
'z :T(l_ f) e g :|__ 'z ,
3

11

(46)

_ 1 At
, ij;;;{ f-f

a—(p)  —m P
Sy oxp l|: € " :| |:1+A/e—(n) i e—(m]
5,27 2 Sy

Egs. (46) and (47) transform Egs. (38), (41) and (42) into
a nonlinear set having "', , “~e? and ""*f as unknowns.
This set can be solved in a manner that closely follows the
principles of the numerical scheme described by Kami et al.
[9]. As soon as the solution is available, the current stress
can be calculated using the relationship:

(441 — (p.vol)
&

(47

In the same time, Egs. (32), (25), (26), (28), and (35) provide
the following formulae that can be used together with Egs.
(46) and (47) for updating the longitudinal and cross-sectional

strains of the gauge:
t+At t
11 81 1 t

t+At
11°

t 2 t+At
Eyt &y -2V &,

t+At t+AL t

&y =

22

(49)

(- T L (),
3

4- Results and Discussions

The simplified model of the tensile test allows calculating
the force-displacement curve and the void evolution in an
efficient manner. In what follows, the results of the model will
be validated by comparison with experimental and numerical
results. The effect of different parameters on the force and
void evolution will be then studied.

4- 1- Validation of the proposed tensile test model

The experimental and numerical results presented by Kami
et al. [16] have been used to validate the simplified model
of the tensile test. Kami et al. [16] conducted tensile test
experiments on AA6016-T4 aluminum alloy. With the help
of these experiments, they defined the hardening law of
AA6016-T4 alloy as Y=525.77(e® + 0.01125)°?7. Other
mechanical parameters of the AA6016-T4 alloy are listed in
Table 1. Furthermore, the identified values of GTN model
parameters based on the approach adopted by Kami et al. [16]
are presented in Table 2. Kami et al. [16] determined the GTN
model parameters by means of an identification procedure that
combines the Response Surface Methodology (RSM) and the
simulation of a uniaxial tensile test. The identification was
accomplished by finding of values of the GTN parameters
which resulted in the lowest error in the prediction of the
experimental force-displacement curve. The values of £, f,,
/. and f_ were calculated using this identification procedure.
While, the values of the other parameters mentioned in Table
2 were chosen from literature.

Table 1. Mechanical properties of AA6016-T4 sheet [16]

Young’s Modulus, Poisons’s __Lankford coefficient
[GPa] ratio, v r, Py Foo
70 152 0.5529 0.4091 0.5497

By using the above-mentioned properties of AA6016-T4
sheet in the simplified model of the tensile test, the force-
displacement curve of the tensile specimen was calculated. To
determine the values of forces and elongations, the following
dimensions of the gauge region were used: 80 mm length, 20
mm width, and 1 mm thickness. In Fig. 2, the force versus
displacement (A/) curve calculated by means of the simplified
model is compared with the experimental and numerical

A M Sy I:’*A’ e-“”il (48) curves presented by Kami et al. [16]. As shown in Fig. 2,
11 11 :
Table 2. GTN model parameters of AA6016-T4 sheet [16]
i 9, 4, 9 Iy Sy ey’ fe I
0.00024 1.5 1.0 2.25 0.04155 0.1 0.3 0.04767 0.2
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the predictions of the simplified model are almost coincident
with the experimental and numerical results of Kami et al.
[16]. It should be noted that the comparison is valid until
reaching the Ultimate Tensile Force (UTF). The value of UTF
determined by the simplified model (5571.56 N) is almost
equal to the numerical UTF (5571.70 N). There is also a small
difference (0.58% error) between the UTF value predicted by
the simplified model and the experimental UTF (5604.24 N).
The Ultimate Tensile Deformation (UTD) predicted by the
simplified model is 19.44 mm (almost equal to the numerical
UTD — 19.50 mm), which is 9.44% far from the experimental
UTD - 17.76 mm. Although this difference might be
acceptable, the authors believe that it could be reduced by
modifying the adopted GTN model parameters, which in turn
requires modifications in the identification procedure utilized
by Kami et al. [16].

6000

5000

4000

3000

Force (TN

2000

Exzperiment (Kami et al., 2014)
------ Finite Element (Kami et al , 2014)
e Bimplified model

e TUT:E

1000

0

0 5 10 15

Al (mm)

20 25 30

Fig. 2. Comparison of uniaxial traction forces predicted by the
simplified model with the results of experiments and the finite
element simulation presented in [16].

The voids evolution curves calculated by finite element
simulation and the simplified model are compared in Fig.
3. From this figure one may notice that until the ultimate
point (UTS) — 17.76 mm deformation — the voids evolution
curve predicted by the simplified model is almost coincident
with the curve predicted by the finite element simulation.
However, after UTS the evolution of voids predicted by the
finite element model accelerates while a smooth increase
is observed in the simplified model curve. This is because
of the fact that the simplified model does not consider
the coalescence of voids. Thus, as mentioned before, the
simplified model provides realistic results until reaching UTS
and it cannot be used beyond UTS.

4- 2- Parameter study

The simplified model of the tensile test was used to evaluate
the effect of GTN parameters on the evolution of voids and also
on the tensile force. Six parameters were considered including
14,54, f,» S, and e ?. For each of these parameters, lower
and upper limit values were selected based on literature [18,
19]. When assessing the effect of a particular GTN parameter
on the void and force evolutions, the other parameters were
kept fixed at the mean of their lower and upper limits. Table
3 shows the lower, mean, and upper values of the above-
mentioned GTN parameters.

The effect of GTN parameters on the evolution of voids
during the uniaxial tensile test is depicted in Fig. 4. As shown
in Fig. 4(a), f, has no effect on the rate of voids evolution.

132

0.24
Finite Element (Fami et al., 2014)

o 0z g Zimplified model
-% e UTS
& 016
[
g 012
2
.'ts’ 0.08
o2

0.04

0 ; r = —_—
0 5 10 15 20 25 ac
Al (mm)
(a)
0.015
Finite Element (Kami etal., 2014)
20012 4 |7 Zimplified model
= ® UTS
(=
5 0.009
g
=2
2 0.006
=
L=
= 0.003
0 T T r T
15 16 17 18 19 20
Al {mm)

Fig. 3. Comparison of voids evolution calculated by the
simplified model with results of the finite element model of
Kami et al. [16].

But, it is obvious that the sample with higher f; will have
higher values of f'at each deformation stage and will probably
fracture at lower strains. An increase in the value of ¢, ¢,and
f, accelerates the voids evolution (see Fig. 4 (b), (c) and (d)).
Fig. 4 (e) shows that when the value of S, is equal to 0.010, the
slope of voids evolution curve is very small. Also, a sudden
change occurs in its slope at about A/=25 mm. So, one may
conclude that higher values of S, are more desirable because
such higher values result in smooth void evolutions. Based on
literature, the common value of S, is 0.1. Furthermore, Fig.
4 (f) shows that increasing e, from 0.05 to 0.50 changes
both the curvature and slope of the voids evolution curve,
the higher the value of e ® the lower the value of voids
evolution curve. On the other hand, by increasing e, the
voids nucleation will be delayed.

The anisotropic GTN model allows to study the effect of

Table 3. The lower, mean, and upper values of GTN parameters.

Parameter Lower limit Mean Upper limit
I 0.000 0.025 0.050
q, 1.0 1.5 2.0
q, 0.5 1.0 1.5
o 0.000 0.025 0.050
S, 0.010 0.105 0.200
e” 0.050 0.275 0.500
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Fig. 4. Effect of, (a) initial void volume fraction, f,, (b) adjusting parameter, ¢, (¢) adjusting parameter, q,, (d) nucleation void volume
fraction, f,, () standard deviation, S, and (f) mean value of void nucleation strain, ¢ ) - ¢ , on the evolution of voids during the
uniaxial tensile test.

specimen orientation with respect to the rolling direction, 6,
on the evolution of voids. The simplified tensile test model
was used to assess the effect of & on voids evolution in
uniaxial tensile testing of AA6016-T4 sheet (see Fig. 5 (a)).
As one may notice from Fig. 5 (a), the void evolution curves
corresponding to 0=0° and #=90° are almost coincident.
This is because of the fact that the anisotropy coefficients
7,=0.5529 and r ;=0.5497 have very close values. On the
other hand, because r,, is quite different from 7 and r, the
void evolution curve corresponding to #=45° is also different
from the ones associated to #=0° and 6=90°. Furthermore,
Fig. 5 (a) implies that when the tensile test is conducted in
a direction with a lower r-value, i.e., #=45°, the evolution of

voids is characterized by a higher speed. To investigate the
latter observation, the Lankford coefficients of the sheet were
set to ,=0.5, r,,=1.0 and r,,=1.5, and tensile tests at 6=0°,
6=45° and 6=90° directions were simulated (see Fig. 5 (b)).
Fig. 5 (b) confirms that the lower the r-value the higher the
void evolution rate, i.e., because 7,=0.5 < r,,=1.0 <r =1.5
the void evolution rate corresponding to §=0>0=45°>6=90°.
Besides the void evolution curves, force-displacement curves
of the tensile test have been calculated using the simplified
model. Fig. 6 depicts the effect of £, ¢,, 9., f,» S, and e, on
the force-displacement curve. As one may notice from Fig.
6, all the parameters, except S,, have noticeable effects on
the tensile force. Furthermore, Fig. 6 shows that increasing

133



A. Kami and D.-S. Comsa, AUT J. Mech. Eng., 2(2) (2018) 127-136, DOI: 10.22060/ajme.2018.13862.5693

008
Theta=0°
no7 4| ==-=-- Theta=45"
§ seeeeree Theta=30%
§ 0.06 4
[EH
5 005 1
=
<
=004 4
%
= 0,03 -
0.0z T T T . T
0 5 10 15 20 25 30
Af {mm)
@
0.08
Theta=0°"
o 007 {]==== Theta=45°
8 weeereens Theta=90"
8
i
=]
=1
&
=
=
0.02 T T T T .
0 5 10 15 20 25 30
Al (mm)
(b)

Fig. 4. Effect of specimen orientation with respect to the rolling
direction on the evolution of voids during the uniaxial tensile
test. (a) Lankford coefficients correspond to AA6016-T4 sheet

and (b) Lankford coefficients are set to ,=0.5, r,.=1.0 and
ry,=1.5.

f1»4,» 4,» and f, and decreasing e, yield in the tensile force
reduction. In order to get a quantitative information on the
changes of the force-displacement curves, the UTF and UTD
values have been extracted from the curves in Fig. 6 and listed
in Table 4. In this table, lower limit, mean, and upper limit are
referring to the lower limit, the mean, and the upper limit of
the GTN model parameters (see Table 3). Consequently, the
values mentioned in Table 4 are the UTD and UTF values
calculated at the three levels of the GTN model (lower limit,
mean, and upper limit). As one may notice, the UTD and UTF
values under the mean column of Table 4 (19.898 mm and
5298.443 N, respectively) are the same. This is because of
the fact that these UTD and UTF values are calculated for

the mean value of all GTN parameters. In agreement with
the conclusions drawn from Fig. 6, Table 4 shows that UTF
decreases whenf), q,,q,,/,,and S, increase and e, ” decreases.
Moreover, Table 4 indicates that increasing f,, q,, ¢,, and f}
results in a reduction of UTD. On the other hand, the lowest
value of UTD corresponds to the mean values of S, and e, .
Finally, the effect of # on the traction force has been
investigated. Fig. 7 (a) shows the force-displacement curves
of AA6016-T4 sheet in the 0°, 45° and 90° directions.
According to this figure, the simplified model is able to
capture the effect of the specimen orientation with respect to
the rolling direction on the traction force. Because r,=0.5529
and r,,=0.5497 are close to each other, the traction forces
corresponding to 0° and 90° directions are almost coincident
(Fig. 7 (a)). To illustrate the deviation in force-displacement
curve with the change of specimen orientation, the Lankford
coefficients are set to »,=0.5, ,,=1.0 and r,=1.5 (see Fig.
7 (b)). According to Fig. 7 (b), the highest forming force
corresponds to the direction with the highest r-value, i.e., 90°
direction.

5- Conclusions

No doubt that the main advantage of the GTN models is their
ability to predict the damage and fracture during loading. But
the results obtained in this research showed that the material
parameters included in GTN models have different effects
in the early stages of deformation. The simplified model of
the tensile test developed by the authors was able to predict
the traction force and voids content with high accuracy and
with an efficient computation time and cost. The simplified
model predicted the experimental UTF of AA6016-T4 sheet
(5604.24 N) with a small error of 0.58%. The model was also
able to predict the experimental UTD (17.76 mm) with an
error of 9.44%. The simplified model shows that an increase
in the values of g, g,, and £ results in accelerating the voids
evolution. Furthermore, the results show that by changing
e,” from 0.05 to 0.50 the curvature and slope of the voids
evolution curve also change. Moreover, UTF decreases when
Jo» 4,» 4, /> and S, increase and e, decreases. Also, it was
found that increasing f,, q,, q,, and f}, caused the reduction
of UTD. The lowest level of UTD was achieved at the mean
values of S, and e,”. The main advantage of the simplified
model is its ability to capture the influence of the specimen
orientation on the force and void evolution curves. This
ability allows applying the model to orthotropic sheets. It is
worth mentioning that, after calibrating f,, ¢, q,, f,, S, and
e, ”) parameters using the simplified model of the tensile test,
one may find values of /. and f, parameters using a trial-and-
error procedure.

Table 4. Change in UTD and UTF with the change of GTN parameters.

UTD (mm) UTF (N)
Parameter — — — —
Lower limit Mean Upper limit Lower limit Mean Upper limit
J 20.384 19.898 19.414 5586.202 5298.443 5017.645
q, 21.486 19.898 18.453 5449.656 5298.443 5138.335
q, 20.628 19.898 18.214 5354.204 5298.443 5175.710
Iy 23.226 19.898 17.976 5378.990 5298.443 5238.972
S, 22.975 19.898 20.995 5378.776 5298.443 5292.798
e 21.733 19.898 22.975 5206.064 5298.443 5377.181
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