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Surface stress effect on nonlinear instability of imperfect piezoelectric nanoshells
under combination of hydrostatic pressure and lateral electric field
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ABSTRACT: In this paper, the nonlinear instability of piezoelectric cylindrical nanoshells under the combined ~ Review History:
radial compression and electrical load including the effects of surface free energy is studied. To consider the surface
effects, the Gurtin-Murdoch elasticity theory is utilized along with the classical shell theory to develop an efficient
size-dependent shell model. To satisfy the balance conditions on the surfaces of nanoshells, a linear variation of
normal stress is assumed through the thickness of the bulk. Electrical field is also exerted along the transverse
direction. Based on the virtual work principle, the size-dependent nonlinear governing differential equations are
derived in which transverse displacement and Airy stress function are considered as independent variables. After
that, a boundary layer theory is used incorporating the surface free energy effects in conjunction with the nonlinear
prebuckling deformation, the large deflections in the postbuckling regime, and the initial geometrical imperfection.
Finally, a two-stepped singular perturbation technique is employed to obtain the size-dependent critical buckling
pressure and the associated postbuckling equilibrium path for alternative electrical loadings. It is revealed that the
electrical load increases or decreases the critical buckling pressure and critical end-shortening of nanoshell which
depends on the sign of applied voltage. Moreover, it is found that by taking surface free energy effects into account,

Received: 6 November 2017
Revised: 17 January 2018
Accepted: 31 January 2018
Available Online: 20 February 2018

Keywords:

Nanomechanics
Piezoelectric material
Nonlinear buckling
Size effect

the influence of electrical load on the postbuckling behavior of nanoshell increases.

Surface elasticity theory

1- Introduction

Due to the distinguished thermophysical properties of
nano-structured elements, they have found wide range
of applications in medicine, aerospace, automotive, and
agriculture which make them as the substantial building
blocks for various nanosystems and nanodevives.
Nanostructures have shown size-dependent properties.
The classical continuum mechanics is a scale-independent
theory. As a result, some modified continuum theories have
been developed to characterize the size effect observed in
nanoscale structures. Several studies have been conducted in
which the proposed modified continuum theories have been
utilized as a bridge between the physics features at macroscale
and nanoscale. Strain gradient elasticity theory, couple stress
elasticity theory, and nonlocal elasticity theory are examples
of these non-classical theories which have been employed in
several investigations. For example, Hu et al. [1] investigated
the transverse and torsional wave in carbon nanotubes based
on nonlocal shell model. Shen and Zhang [2] explored the
torsional nonlinear instability of carbon nanotubes via
nonlocal shear deformable shell model. Wang et al. [3]
developed a size-dependent Timoshenko beam model on the
basis of the strain gradient elasticity theory. Ansari et al. [4]
proposed a calibrated nonlocal plate model for free vibration
analysis of graphene sheets. Khademolhosseini et al. [5] used
nonlocal elasticity theory for the size-dependent torsional
buckling analysis of carbon nanotubes. Shen and Zhang [6]
proposed a nonlocal beam model for nonlinear mechanical
behavior of carbon nanotubes embedded in elastomeric
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substrates. Ahangar et al. [7] analyzed the stability of a
microbeam conveying fluid based upon the modified couple
stress elasticity theory. Ghavanloo and Fazelzadeh [8]
constructed a nonlocal shell model for radial vibrations of
spherical shells at nanoscale. Shen [9] studied the torsional
postbuckling response of microtubules via nonlocal elastic
shell model. Ghanbarpour Arani et al. [10] predicted the
nonlocal piezoelasticity based wave propagation of bonded
double-piezoelectric nanobeam-system. Sahmani et al. [11]
employed the modified strain gradient elasticity theory for
the nonlinear vibrational response of functionally graded
microbeams. Mustapha and Ruan [12] anticipated size
dependency in axial dynamics of magnetically-sensitive
strain gradient microbars with end attachments. Sahmani
and Bahrami [13] utilized the strain gradient continuum
theory for dynamic stability analysis of microbeams
actuated by piezoelectric voltage. Sari and Al-Kouz [14]
reported the nonlocal natural frequencies of non-uniform
orthotropic Kirchhoff plates resting on an elastic foundation.
Aydogdu and Arda [15] investigated the torsional vibration
characteristics of double-walled carbon nanotubes based on
the nonlocal theory of elasticity. Sahmani and Aghdam [16-
18] employed the nonlocal continuum theory to study the
nonlinear instability of hybrid functionally graded nanoshells
under different loading conditions. Mohammadimehr et al.
[19] examined the size-dependent free vibrations of double-
bonded isotropic piezoelectric Timoshenko microbeam under
initial stress. Sahmani and Aghdam [20, 21] analyzed the
linear and nonlinear vibrations of pre- and post-buckled lipid
micro/nano-tubules based on the nonlocal strain gradient
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elasticity theory. Lu et al. [22] employed the nonlocal strain
gradient theory of elasticity to capture size effects on the
free vibration behavior of nanobeams. Sahmani and Aghdam
[23] predicted the size-dependent nonlinear bending of
nanobeams made of nanoporous biomaterials. El-Borgi et
al. [24] analyzed the torsional vibration of size-dependent
viscoelastic rods. Sahmani and Aghdam [25] and Sahmani
et al. [26] utilized the nonlocal strain gradient continuum
mechanics for the size-dependent nonlinear instability of
smart and porous micro/nano-structures.

Because of different environmental conditions, the equilibrium
requirements relevant to the atoms on the free surfaces of a
structure are different from those of the bulk. This difference
leads to create an extra energy namely as surface free energy.
The effect of surface free energy causes different material
properties for the boundary layers of the structure. As a result,
because by decreasing the scale of a structure, the ratio of
surface area to volume increases, surface free energy effect
plays an important role in the mechanical characteristics of
nanostructures which yields size-dependent behavior. For
this reason, Gurtin and Murdoch [27, 28] proposed a generic
theoretical framework based on the concepts of continuum
mechanics that accounts surface free energy. Based upon
their surface elasticity theory, the surface layer of a solid
can be modeled as a mathematical layer of zero thickness
having different material properties from the underlying bulk
which is perfectly attached to the membrane. In recent years,
several investigations been carried out in which Gurtin-
Murdoch elasticity theory has been used in connection with
the mechanical behavior of nanostructures.

Lim and He [29] developed a size-dependent model to analyze
the geometrically nonlinear response of thin elastic films with
nanoscale thickness on the basis of continuum approach using
surface elasticity theory. Li et al. [30] studied the influence
of surface free energy on the stress concentration around a
spherical cavity in a linearly isotropic elastic medium based
upon surface elasticity theory. Wang and Feng [31] extended
the surface elastic model to investigate the surface stress
effects on contact problems based on a closed-form solution.
He and Lilley [32] reported the effects of surface stress on
the static bending and bending resonance of nanowires with
various boundary conditions. By using Gurtin-Murdoch
elasticity theory, Mogilevskaya et al. [33] solved a two-
dimensional problem of multiple interacting circular nano-
inhomogeneities and nano-pores. Zhao and Rajapakse [34]
examined the plane and axisymmetric problems corresponding
to a surface-loaded elastic layer including effects of surface
free energy. Fu et al. [35] investigated the influences of
surface free energy on the free vibration and buckling
behavior of nanobeams in the both linear and nonlinear
regimes using Galerkin’s technique. Through incorporation
Gurtin-Murdoch elasticity theory into the different types of
beam theory, Ansari and Sahmani [36] predicted the bending
and buckling behavior of nanoscale beams in the presence
of surface stress effects. Also, Ansari and Sahmani [37]
studied the free vibration response of rectangular nanoplates
based on surface elasticity theory and within the framework
of different plate theories. Wang [38] investigated the
postbuckling characteristics of nanobeams containing internal
flowing fluid incorporating the effects of surface stress. Liu
et al. [39] analyzed the propagation of shear horizontal waves
in an ultra-thin plate-like film with nanoscale thickness
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including surface stress effects within the framework of a
theoretical solution. Khater et al. [40] investigated the impact
of surface free energy and thermal loading on the static
stability of curved nanowires. Gao et al. [41] considered the
surface stress effects in the analysis of nanowire buckling
on eclastomeric substrate. Sahmani et al. [42] developed a
non-classical beam model to study the nonlinear forced
vibrations of nanobeams on the basis of surface elasticity
theory. Sahmani et al. [43] presented the surface stress effects
on the free vibration response of postbuckled circular higher-
order shear deformable nanoplates based on Gurtin-Murdoch
elasticity theory. Zhang et al. [44] implemented the high-order
surface stress model into the Bernoulli-Euler beam theory to
analyze the transverse vibration of an axially compressed
nanowire embedded in elastic medium. Sahmani et al. [45]
achieved the natural frequencies of postbuckled third-order
shear deformable nanobeams made of functionally graded
materials including the effects of surface free energy. Liang
et al. [46] proposed a theoretical model to study the effects of
surface stress on the postbuckling behavior of piezoelectric
nanowires. Abdel Rahman et al. [47] developed a nonlinear
finite element model to anticipate the quasistatic response
of nanoindentation problems of an -elastically-layered
viscoelastic material considering the surface elasticity effects.
Sahmani and Aghdam [49] and Sahmani et al. [48, 50-52]
studied the surface stress size dependency in the buckling
and postbuckling characteristics of nanoshells under different
loading conditions.

The objective of the present study is to examine the nonlinear
instability of piezoelectric cylindrical nanoshells subjected
to combined radial compression and electrical load in the
presence of surface free energy effects. To this end, an
efficient size-dependent shell model is developed through
implementing of Gurtin-Murdoch elasticity theory into the
classical shell theory. On the basis of the variational approach
using the principle of virtual work, the non-classical
governing differential equations are derived. Subsequently,
a boundary layer theory is utilized incorporating the surface
free energy effects in addition to the nonlinear prebuckling
deformation, the large deflections in the postbuckling regime,
and the initial geometrical imperfection. Then a solution
methodology based on a two-stepped singular perturbation
technique is put to use to obtain the size-dependent critical
buckling pressure and associated postbuckling equilibrium
path of piezoelectric cylindrical nanoshells.

2- Problem Definition and Governing Equations

As it can be seen in Fig. 1, a cylindrical nanoshell made of
PZT-5H piezoelectric material with the length L, thickness #,
and mid-surface radius R subjected to hydrostatic pressure
combined with electrical field is considered. A bulk part and
two additional thin surface layers (inner and outer layers)
are different parts of the nanoshell. The material properties
associated with the bulk part include the Young’s modulus £
and Poisson’s ratio v. The two additional surface layers are
assumed to have surface elasticity modulus of E, Poisson’s
ratio v and the surface residual tension z. On the basis of
a curvilinear coordinate system depicted in Fig.1, whose
origin is located on the middle surface of the nanoshell, the
coordinates of a typical point in the axial, circumferential and
radial directions are represented by x, y and z, respectively.
Now, based upon the classical shell theory, the displacement
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field for an imperfect nanoshell can be given as

u, (x,y,z):u(x,y)—zw (1-a)
_ L ow(xy)

u, (x,y,z)=v(x,y)-z & (1-b)

uz(x,y,z)zw(x,y)+w*(x,y) (1-¢c)

where u, v and w are the displacements of middle plane along
x, y and z axis, respectively; w” stands for the initial geometric
imperfection.

Based upon the von Karman-Donnell-type kinematics of

nonlinearity [53], in which it is assumed that the thickness
of the shell /4, is remarkably small compared to its radius
of curvature R, the relations of strain-displacement for an
imperfect piezoelectric cylindrical nanoshell subjected to an
external electrical field through thickness direction (£) can
be written as

d,V
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ox? h

. o'w N d,V
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where ¢ M, ¢ M,y Yand ¢ *, & » E Ve E are, respectively, the

mechanlcal and electrlcal strain components Also, & 0, eylo,
7., represent the middle plane strain components, and K_,
', , k_ denote the curvature components of the nanoshell.
l\/foreover d,, and V=E_h are the piezoelectric strain constant
and applied Voltage across the shell thickness, respectively.
After that, the constitutive relations related to an elastic

material can be expressed as

. A+2u A 0lfe
o,r=| 4 A+2u 0 8;/‘;[,
- 0 0 ul|ra
3
A+2u A 071 0]]|9Y ®)
A a+2u oo 1] "
d,V
0 0 ullo of|=

in which A=Ew(1-v?) and u=E/2(1+v)) are Lame’s constants.
An efficient way to consider the effects of surface free energy
in the conventional continuum mechanics is using Gurtin-
Murdoch elasticity theory. Due to the atomic features observed
in nanostructures, the elastic surface and bulk material are
affected by each other. Therefore, structures at nanoscale are
mostly subjected to in-plane loads in different directions.
These in-plane loads acted on the surfaces a nanoshell lead
to a kind of surface stress, the relation of which with respect
to the strain components can be determined based on the
constitutive equation developed by the Gurtin-Murdoch
elasticity theory as below [27, 28]

G =7.0. +(T +ﬂ,)5kk5l.j

sYi
+2(u, 7, )&, +T U], (1,7 =x,y) “)

oL =T,

where /4 and p_stand for the surface Lame’s constants and
T is the residual surface stress under unstrained conditions.
Asa result, the surface stress components with respect to the
displacement field can be derived as

=(4 +2,U.;)[5Z —%j

2
5 .
+(z, + 4, )(ggj —MJHS _T_s[(w—””)]
’ h 2 ox
d,V
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h

h
+w )Jz (%)

[a_a< Yol o) g J

v Ox ox oy o oy
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O-;x:lu_syi{ _Ts a_u+ ( ) ( )_Z aw
" oy ox oy Ox Oy
ow ’ ow
o, =1, o, =T,—
0. y

In comparison with other stress components, the normal bulk
stress component o_ is small based on the classical continuum
theory. As a result, ‘it is assumed that 0_=0. Nevertheless, the
surface conditions relevant to the Gurtin-Murdoch model
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cannot be satisfied by this simplification. In order to solve
this problem, a linear variation of the stress component o_
through the shell thickness is supposed in such a way that
satisfies the balance conditions on the surfaces of nanoshell.
In accordance with this assumption, one will have

o5t 60'5; o loni 60'52_
Xz oy _ Xz 4
ox oy Oox oy
O-ZZ = 2

olonil aO'yS; oot~ 00
Xz + + p.¥4 + 2
Ox oy Ox oy

+ z
h

(6)

in which the superscripts S* and " refer to the outer and inner
surfaces of nanoshell, respectively. By inserting Eq. (5) into
Eqg. (6), o_ can be achieved as

2z (0w 03
0. = ;Z( ax%aywzj ™

Now, by substituting the ¢_ in the constitutive equation (Eq.
(3)) relevant to the normal stresses (o, o, ) of the bulk, it
yields

:(mzﬂ)(gjj _%)

(8-a)
v dyV Vo,
+Al e, ——— |+
(” h j (1-v)
:(14—2/1)(5;‘; _dsh_le
(8-b)

waf g BV, von
h (1-v)
Based upon the surface elasticity theory, the total strain

energy of a piezoelectric cylindrical nanoshell incorporating
the surface free energy effects can be given as

m, ——JjasdzdS+ [joeds +joeds J
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h ox oy

where S is the area occupied by the middle plane of the
nanoshell. The in-plane forces, bending moments and shear
forces presented in Eq. (9) can be defined as
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Moreover, the work /7, done by the external radial load g can
be obtained as

I, = IqwdS (13)
N

Now, by using the principle of virtual work as below

t

s[(m, -11,)dt=0 (14)
4

and taking the variation of u, v, and w and integrating by

parts, the non-classical governing differential equations can
be derived in the following form

aNxx + any =0 (15-3)
Ox Oy
oN, ON
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The Airy stress function f{x,y) can be introduced as
2 2 2
v, =L N =2 g =9
oy T ox ! 0Ox Oy

As a result, the strain components of middle plane can be
derived as
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Moreover, the geometrical compatibility equation for an
imperfect cylindrical shell can be expressed as

1
Q= ] ¢3_A5*5 (18)

o'l . ), ~ Oy [ Ow ’ _O'w dw
oy’ ox® oxoy Ox Oy ox’ oy’
* * * (19)
ow ow’ ow ow’ Ow ow 1 o'w
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oxdy oxdy ox’ dy> oy’ ox* R ox’

With the aid of differential equations of Egs. (15¢) and (19)
and in accordance with Egs. (10) and (17), the size-dependent
nonlinear governing differential equations can be derived as
below
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¢4:D1*1_E1*1 > ¢’5:D1*2+D5*5_E1*1 (21)

The end supports of nanoshell are assumed to be clamped.
Therefore, the necessary boundary conditions at x=0,L can
be expressed as

For clamped edge supports: w=0, ow/0x=0

Additionally, it is clear that

27R

[N dy+7R%g =0 (22)
0

Additionally, the closed condition (periodicity condition) can
be written as

27R aV
j Zdy =0 (23-2)
oy
which yields
e et )
( . dy =0 (23-b)
0 o(w +w’ waw' 1fow) ow ow’ £
7T‘¢l{7ax J +7R *E[ay ] *§?+(¢|7¢2)N

Furthermore, the average end shortening of nanoshell can be
introduced as

A, 1 o
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3- Solution Procedure

3- 1- Boundary layer-type governing equations

At first, the following dimensionless parameters are defined
to perform the solution methodology:

x=-7  y-r | gL
L R R
7°Rh
n= 2h2 > = TE
{all’aIZ’GSS’dlI’dIZ’dSS’e }
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Alth AllO
33/4qLR3/2 34 \/_
q=4ﬂA“0h3/2 ’ T 4ah
in which 4, =(A+2u)h. Now, by introducing the derivative

operators as below
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the dimensionless form of the size-dependent nonlinear
governing differential equations can be obtained as follow

2
eL,w)+e2rL,w)- 0 F;
45X (27-a)
=B LW +w " F)+e” 53”4721
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F)+27L, (W )+—
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1
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In addition, the boundary conditions in dimensionless form
will be at X=0, «t

For clamped edge supports: W=0, oW/0X=0

Also, one will have

J'ﬁ 82F

2 a3 N
5 rdY +33 € P =0=0 (29)

and the closed condition becomes
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Moreover, the unit end shortening of nanoshell can be
expressed as

LOF | OF
‘9|ﬂ 6},:7‘926)(:
2
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in which 9,=d, R(a, “+a,,")/h*, 9, =R/h.

3- 2- Singular Perturbation Technique

The important parameter € was introduced in the preceding
section. For a shell-type structure, it has been practically
indicated that the value of ¢ is always ¢ << 1. So, Egs. (27)
can be considered as boundary layer type equations [54-56]
incorporating the both nonlinear prebuckling deformations
and large postbuckling deflections in addition to the surface
free energy effects. Now, by assuming € as a small perturbation
parameter, a two-stepped singular perturbation technique can
utilized in which, € is put as the first perturbation parameter.
This efficient solution methodology has been successfully
applied to the nonlinear analyses of cylindrical shells at
macroscale [57-62]. Based on this technique, the independent
variables are expressed as the summation of the regular and
boundary layer solutions as follow

W =W (XY .,e)+W (XY ,e&)+W (XY ,eq) (32-a)

F=F(X)Y,e)+F(X.Y,e&)+F (XY ,cq) (32-b)
where W(X Y,0), F(X Y,e) denote regular solutions of the
nanoshell, W(X,Y,¢,&), F(X,Y,c,&) and W(XYeg) F(XYeg)
are the boundary layer solutions corresponding to X=0 and
X=n, respectively. These solutions are defined in the forms of
perturbation expansions as below

W(XY.,e)=> €W, (X))

F(X,Y,e)zioe”z F (X))

W (XY ,e,g)jz €W, (XY &)
ﬁ(X,Y,e,f)zlz: € E L, (XY L9) >
W(XY,eq) lzo“e”z“Wl,M(X Y.5)

F(XY,e¢) Ze”z*zF,/2+2 (X.Y.)

in which ¢ and ¢ represent the boundary layer variables which
are equal to

= e 34
In addition, it is assumed that
& £31/4 _ Z < o)

3 q= 2 ; (35)

Through substitution Eqs. (32) and (33) into the size-dependent
nonlinear governing differential equations (Eq. (27)) and
collecting the expressions with the same order of ¢, the sets
of perturbation equations will be derived corresponding to the
both regular and boundary layer solutions which are given
in Appendix A. After that, it 1s assumed that W(X Y)=4,",

W, XY)=WXY)=0 and W, (X,Y)=4,°? in addmon
to F(X,Y)=-B O X+Y/2), F X Y) F,(X,Y)=0, and
F (X, Y)—-B (”(,[)’2)(2+Y2/2) Additionally, the initial buckling
mode and the initial geometric imperfection of the nanoshell
is assumed in the flowing form

W,(X .Y )=AL + AP sin(mX )sin(nY ) (36-a)

w *(X Y ,e):e2 A:l sin(mX )cos(nY )

=& LAY sin(mX )cos(nY ) (36-5)
in which /=4, /4, @ represents the imperfection parameter.
By inserting Eq. (36) in the sets of perturbation equations,
the coefficients of W(X,Y) and F(X,Y) can be extracted
step by step, all of which are in terms of 4. The obtained
asymptotic solutions corresponding to clamped edge supports
are given in Appendix A.

Now, with respect to the given boundary conditions, Eq.
(29), closed conditions Eq. (30), and based upon the unit end
shortening Eq. (31), the formulations of the postbuckling
equilibrium paths can be derived as below

'Pq = %33/4 673/2 {PI(O) + PI(Z) (A 1(12) 62 )2 +.. } (37)
and
5, =8 ~f + (4P &Y +... (38)

where P @, P ®,5 ), 6@, and are defined in Appendix A.
q q q q

In the second step of the solutlon methodology, the maximum
dimensionless deflection of the nanoshell 4 Pe is now
considered as the second perturbation parameter which in
contrast to the first small perturbation parameter €, it may be
large. If it is assumed that the maximum deflection occurs
at the dimensionless point of (X,Y)=(z/2m,x/2n), the second
perturbation parameter can be obtained as

AP e= W + S+ (39)

inwhich W stands for the maximum dimensionless deflection
of the nanoshell as below
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n (40)

W, =etn s,
h
where the symbols S, and S, are given in Appendix A.

4- Results and Discussion

In this section, the postbuckling equilibrium paths of
piezoelectric cylindrical nanoshells subjected to combination
of hydrostatic pressure and electric field are presented
including surface free energy effects and corresponding to
the both perfect and imperfect nanoshells. . The material
properties of nanoshell are tabulated in Table 1 corresponding
to PZT-5H piezoelectric material. Also, in all of the preceding
numerical results, it is assumed that the edge supports of
nanoshells are clamped and R/A=50, L>/Rh=200.

Surface layers with matenal properties of 4, i, T¢

Bulkwith material properties of 1 u B
= +
+

Electricfield

ﬂ Hydrostatic pressure
—
- -
2
’ -

— T

Hydrostatic pressure -z, 7\-,-7
~ I 7
v xX,u
>

Fig. 1. Schematic view of a piezoelectric cylindrical nanoshell
and its surface layers, subjected to hydrostatic pressure and
electric field

At first, the validity as well as the accuracy of the present
solution methodology is checked. Because in accordance
with authors’ knowledge, there is no investigation available in
the published literature in which the buckling or postbuckling
behavior of piezoelectric nanoshells is investigated in the
presence of surface stress effects, by ignoring the nonlinear
and surface elasticity terms, the critical buckling load of a
cylindrical shell at usual scale subjected to lateral pressure
is calculated based on the present solution procedure and is
compared with that of Mirfakhraei and Redekop [66] using
differential quadrature numerical method. In Table 2, the
critical buckling pressures of cylindrical shells with clamped
edge supports obtained by the two different methods are
compared corresponding to the same material and geometric
properties. A very good agreement is found which confirms
the validity of the current analysis.

Fig. 2 depicts the dimensionless postbuckling load-deflection
curves of perfect and imperfect piezoelectric nanoshells with

Table 1. Material properties of a cylindrical nanoshell made of
Silicon [63-65]

A (Pa) 31x10°
u (Pa) 35.5%10°
v 0.3

u, (N/m) 2.31

A, (N/m) 33

7 (N/m) 1

d, (m/V) -2.65x101°

184

Table 2. Comparison of the critical buckling pressures of
isotropic cylindrical shells with clamped edge supports
subjected to lateral pressure (v=0.3, E=200 GPa)

L/R R/ Present work (Pa)  Ref. [66] (Pa)
300 84991.09 85860
3000 275.82 276.5
300 32897.22 32954
3 3000 108.13 109

various thicknesses obtained by the classical and non-classical
shell models. It is revealed that by increasing the value of shell
thickness, the surface free energy effects diminish and the
non-classical postbuckling curve shifts to the classical one.
Moreover, it can be seen that through moving to the deeper
postbuckling regime, the postbuckling curves corresponding
to various shell thicknesses tend to each other which means
that by increasing the deflection in postbuckling domain, the
effects of surface free energy decrease. These anticipations
are the same for the both perfect and imperfect nanoshells.

Mlustrated in Fig. 3 are the classical and non-classical
dimensionless load-shortening equilibrium curves of perfect

1.2

Dimenslonless radlal load

o 2 4 6 8 10
Dimensionless maximum deflection

(2)

Dimenslonless radial load

[} 2 4 6 8 10
Dimensionless maximum deflection

(b)
Fig. 2. Dimensionless postbuckling load-deflection curves of

piezoelectric nanoshells with various shell thickness (}V=0);
(a) W=0, (b) W'=0.1
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Fig. 3. Dimensionless postbuckling load-shortening curves of
piezoelectric nanoshells with various shell thickness (}'=0);
(a) W'=0, (b) W'=0.1

and imperfect piezoelectric nanoshells corresponding
to different shell thicknesses. It is observed that for a
piezoelectric cylindrical nanoshell made of PZT-5H, surface
free energy effects cause to increase the both critical buckling
pressure and critical end-shortening in such a way that the
slope of prebuckling part of load-shortening equilibrium
curve increases. This observation is more considerable for
piezoelectric nanoshell with lower value of shell thickness.
This pattern is similar for nanoshells with and without initial
geometric imperfection.

Figs. 4 and 5 show, respectively, the dimensionless load-
deflection and load-shortening equilibrium paths obtained by
the classical and non-classical shell models for piezoelectric
nanoshells subjected to various voltages. It is found that for
the both classical and non-classical shell models, by applying
an electric field with positive voltage, the both critical
buckling pressure and critical end-shortening of nanoshell
increase while an electric field with negative voltage has an
opposite influence. Also, it can be seen that by taking surface
free energy effects into account, the influence of electrical
load on the postbuckling behavior of nanoshell increases.
Additionally, it is revealed that in contrast to the classical

o
=
i 6 Classical , V=o0.v B
= | Non-classical , V=0.uv
3 Classical , V=0ov
T°= MNon-classical , V=ov
E R Classical , V=-0.1v
. - Non-classical , V=-0.1v il
E g
0 g5} J
o ! 1 1 1
[ 2 4 6 8 10
Dimensionless maximum deflection
(a)
1.2
Classical , V=0.1v
""" Non-classical , V=04v
1 Classical , V=ov 1
-§ MNon-classical , V=ov
- e Classical , V=-0.1v
% e Non-classical , V=-0.1v
= R k
Tt
o
g J
E
[
o ! 1 1 1
[ 2 4 6 8 10
Dimensionless maximum deflection
(b)

Fig. 4. Influence of applied electrical load on the postbuckling
load-deflection curves of piezoelectric nanoshell corresponding
to various values of applied voltage (=5 nm);

(a) =0, (b) W'=0.1

shell model, by moving to deeper postbuckling regime of the
non-classical load-deflection equilibrium paths, the influence
of electric field decreases.

Plotted in Fig. 6 are the dimensionless load-deflection and
load-shortening equilibrium paths of perfect and imperfect
cylindrical nanoshells corresponding to various surface
elastic constants. It can be observed that surface free energy
effects may cause to increase or decrease the stiffness of
piezoelectric nanoshell which depends on the sign of surface
elastic constants. It is seen that the size effect corresponding
to positive surface elastic constants leads to increase the
critical buckling load, while the size effect corresponding to
negative surface elastic constants cause to decrease it.

5- Concluding

The purpose of the present investigation was to analyze
the size-dependent buckling and postbuckling behavior
of piezoelectric cylindrical nanoshells subjected to radial
compression combined with electric load in the presence of
surface free energy effects. To this end, the Gurtin-Murdoch
elasticity theory was implemented into the classical shell
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Fig. 5. Influence of applied electrical load on the postbuckling
load-shortening curves of piezoelectric nanoshell corresponding
to various values of applied voltage (=5 nm);

(a) =0, (b) W'=0.1

theory to develop an efficient non-classical shell model.
After that, a boundary layer theory in conjunction with a
two-stepped singular perturbation technique was employed
to obtain the size-dependent critical buckling pressures and
associated postbuckling equilibrium paths corresponding to
various shell thicknesses, applied voltages and surface elastic
constants.

It was demonstrated that by increasing the value of shell
thickness, the surface free energy effects diminish and
the non-classical postbuckling curve shifts to the classical
one. Furthermore, It was indicated that for a piezoelectric
cylindrical nanoshell made of PZT-5H, surface free energy
effects cause to increase the both critical buckling pressure
and critical end-shortening in such a way that the slope
of prebuckling part of load-shortening equilibrium curve
increases. In addition, it was seen that by increasing the
deflection in postbuckling domain, the effects of surface
free energy decrease. Also, it was found that for the both
classical and non-classical shell models, by applying an
electric field with positive voltage, the both critical buckling
pressure and critical end-shortening of nanoshell increase
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Fig. 6. Influence of surface elastic constants on the buckling and
postbuckling behavior of perfect and imperfect piezoelectric
nanoshell subjected to axial compression
(h=5 nm,}V'=0)

while an electric field with negative voltage has an opposite
influence. Additionally, it was seen that by taking surface
free energy effects into account, the influence of electrical
load on the postbuckling behavior of nanoshell increases. It
was observed that surface free energy effects may cause to
increase or decrease the stiffness of piezoelectric nanoshell
which depends on the sign of surface elastic constants.

Appendix A
The sets of perturbation equations for the regular solution are:
-
- % = B2Ly (W, Fo) + Qo
o i o W BEL o 4. o
O L1 (Fo) + 28L0o(Wo) + 537> = = 5 L1 (Wo, Wo) — 761 5* Lo (Wo, Wo) + 762.L3 (Wo, Wo)
T93p% .
+y La(Wo, Wo)

0%F, ),
0X?

= ﬁzil(Wl/Zr Fo) + ﬁzil(WOI FI/Z)

%W, 2 s PP
asz/z = *%51 (Wo, Wy )2) — 01 2L (Wo, W 2)

0(e¥/2):4 Ly, (Fy o) + 2L0y (W) +

S0 R T T L
+T0,L3(Wo, Wy 2) + TLA(WOv Wi/2)
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0%F, P P P
—5x7 = B LW Fi) + B2L (W, Fo) + B2, (W, Fy) + 04
L A I LI IS
o~ Lz:(F:)Jrz‘Ulzz(Wl)+ Frea 77£1(Wﬂ wy) **L (W2, Wi ) — 70132 L, (Wo, Wy)
O(e"):
/
—T01 2 Lo (W2, Wa ) + T02L5(Wo, W) + T0,.L5(Wh 2, Wy 12) + 0 L (o, W)
n} /f »
LWy Wy/2)
” 2% 2 2 2 2f
ﬂ__ﬂ Ly (Wo, F2) + 2Ly (W2, Fy) + 2L, (W5, F1/2)+/3 Ly (W32, Fo)

/ B
o(e¥/2): Ly1(Fay2) + 2TL0a (W) + {)Xaz 2= *7L1(W0:W3/2) 7712,(W1/Z,W1)

— 70,32 L (Wo, Ws2) — rﬂ,/fliz(W,,z Wy) + T0,L5(Wo, W) + 0,L5(Wy 12, Wy)
1\93[9

L(Wo, W;/;)+ Ca(Wx/; i)

L1 (Wo) + 27L12(Wo) *sz = B2Ly(Wo, Fy) + B2Ly(Way, Fy2) + B2L, (Wi, Fy)

+B2Ly(Ws2 F:/z) + B2Ly(Wy + W, Fy) + Qz
p?
Loy (Fy) + 2TLy (W) + 0)(2 = —751(W0 W) —*£1(W1/2 Ws2) —751(W1 W)
*Tﬂ1ﬁzﬁz(Wo Wy +2W*) — Tﬁiﬁle(Wn/z Wz/z) - Tﬁ]ﬁsz(Wl wy)
+T02L3(Wo, Wy + 2W*) + T9,L3 (W2, W32) + T9,L3 (W1, Wy)

0(€?):

T2 . TP, 3% .
= LW, W) = — Lo (W2 Way2) + —— Lo (W, W)

_ - 0%F, Py - B A w oo o
£10(ya) + 2781a(y2) = 25 58 = R (T Fs) + 25 (W ) 4 6, (W )

HB2L(Wsya Fy) + B2Ly (W + W, Fypp) + 2Ly (Wsa, o)

5 . W/ B o B¥ i o ’

B Lya(Fspz) + 2TLyp(Ws ) + Fremin —7L1(W“, Ws/2) — 7£1(W1/2,W1 +2w*)
0(e/2): )

=5 La (T, Ws2) = 201 52 Lo (Wo, Ws 2) = 7022 Lo (W, Wy + 2W°)
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2 2
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92F
F
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The sets of perturbation equations for the boundary layer
solutions are:

9 84W3/2 62F‘S/Z — 0
4 a 4 a 2
0 ( 52 ) 5 f
64F~‘5/2 2I/V~3/2

(A2)

0

_ oW
191?4'(1—22'191) P 22 =

The obtained asymptotic solution corresponding to clamped
edge supports are:
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+ e AW+ A sin (mX )sin(nY )ug:’cus(zmx) Alcos(2nY )+ AL cos(2mX )cos (207 ) |+0 (€°)

y? Y
F=-39 (/1’2X2 + 7) +e2|-B) (L?ZX2 3 ) + B2 sin(mx) sm(nY)]
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The parameters in Egs. (37) to (40) are as follow
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where K (i=0,...,10) are the parameters in terms of §, &,
4., 8, 9, m,n, B, and [ obtained via the sets of perturbation
equations.
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