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ABSTRACT: In this study, the acrothermoelastic behavior of functionally graded plates under hypersonic
airflow is investigated. The classical plate theory based on both mid-surface and the neutral surface position
is used to model the structural treatment. Also, Von Karman strain-displacement relations are utilized to
involve the structural nonlinearity. To consider the applied hypersonic aerodynamic loads, nonlinear (third-
order) piston theory is employed to model unsteady aerodynamic pressure in hypersonic flow regime. Material
properties of the functionally graded panel is assumed to be temperature dependent and altered in the thickness
direction according to a simple power law distribution. The generalized differential quadrature method is
used to transfer the governing partial differential equation into an ordinary differential equation. The onset
of flutter instability, the stability boundaries, and the time response analysis of a functionally graded plate
are determined by applying the fourth order Runge-Kutta method. Moreover, the effect of some important
parameters such as Mach number, in-plane thermal load, plate thickness ratio, and volume fraction index on
the plate aerothermoelastic behavior is examined. Comparison of the obtained results with the available results
in the literature confirms the accuracy and reliability of the proposed approach to analyzing aerothermoelastic
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behavior of functionally graded plates in hypersonic flow.

Hypersonic airflow

1- Introduction

Functionally Graded Materials (FGMs) usually made from a
mixture of two materials; their material properties demonstrate
a smooth change from one side to another by gradually
varying the volume fraction of constituent materials. This
gradual transition eliminates interface problems and mitigates
thermal stress concentrations. So FGMs have attracted
considerable interest as one of the advanced inhomogeneous
composite materials in the engineering community,
especially in high-temperature applications such as space re-
entry vehicles and high-speed aircraft [1]. Panels and outer
skins of these vehicles are exposed to combined effects of
aerodynamic, thermodynamic, inertial, and elastic forces.
Therefore, one of the key factors in the design of their outer
skins is the aerothermoelastic considerations. It is observed
from the existing literature, the aerothermoelastic behaviors
of homogeneous panels have gained considerable attention
of the researchers. However, limited works have been
focused on the aerothermoelastic response of FGM panels
in hypersonic regime. In supersonic/hypersonic regime, the
well-known analytical relationship, called piston theory, has
been commonly applied to compute aerodynamic pressure
loads. Since, in the hypersonic regime, both structural and
aerodynamic nonlinearities play an important role in the
aeroelastic response of a panel. So linear piston theory is not
applicable to such problems, and the nonlinear piston theory
(third-order) seems more suitable.

The early study on the aerothermoelastic phenomenon can
be traced back to the work of Houbolt [2]. He investigated
the aerothermoelastic behavior of aircraft structures in high-
speed flight. Bolotin [3] studied the nonlinear flutter of curved
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panels and provided a general understanding of all factors
contributing to the instability associated with non-conservative
problems. Dowell [4] studied the aerothermoelastic stability
boundaries and the post-flutter behavior of two and three-
dimensional simply supported flat plates. He also collected
many types of this research topic in his book [5]. Schaeffer
and Heard [6] examined the effect of nonlinear temperature
distribution on the aeroelastic response of a simply supported
rectangular panel subjected to supersonic flow over one
surface. They showed that nonlinear temperature distribution
may have a significant effect on flutter instability.

The first interaction of aerodynamic and structural
nonlinearities was studied by Mcintosh [7, 8] and Eastep and
Mcintosh [9] in flutter analysis of simply supported two and
three-dimensional panels in hypersonic airflow. Xue and Mei
[10] investigated nonlinear flutter response of isotropic panels
under thermal effects using Finite Element Method (FEM).
Also, Xue and Mei [11] studied the nonlinear flutter behavior
and the fatigue life of two-dimensional isotropic panels in
the frequency domain using FEM. Bein et al. [12] provided
the hypersonic flutter of a simply supported, curved shallow
orthotropic panel subjected to aerodynamic heating. They
showed the ability and fidelity of the third-order piston theory
to simulate unsteady aerodynamic pressure in the hypersonic
aeroelastic problem. Cheng and Mei [13] studied finite
element time domain formulation for panel flutter analysis
with thermal effects in hypersonic airflow and discussed how
to evolve a chaotic behavior. Pourtakdoust and Fazelzadeh
[14]investigated aerothermoelastic analysis of a flat skin panel
with wall shear stress effect in high supersonic flow. Their
study shows that the domain of transient chaotic instability
is diminished when the wall shear stress effect is considered.
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Culler and McNamara [15] investigated aerothermoelastic
response of panel structures in hypersonic flow. They also
studied the impact of Fluid-Thermal-Structural coupling on
response prediction of hypersonic skin panels [16].

In addition to the performed aeroelastic studies in the field
of homogeneous panels, many research works have been
carried out on aeroelastic analysis of FGM plates as well as
static and dynamic response analyses. Prakash and Ganapathi
[17] studied aeroelastic behavior of Functionally Graded
(FG) plate in supersonic flow under thermal load using finite
element method. Shen [18] analyzed thermal post-buckling of
simply supported, shear deformable functionally graded plate
using higher-order shear deformation plate theory including
thermal effects. Sohn and Kim[19, 20] investigated acroelastic
instability and flutter characteristics of functionally graded
plate in supersonic flow including thermal effect. and showed
the effects of the volume fraction distributions, temperature
changes, aerodynamic pressures and the boundary conditions
on the panel flutter. Fazelzadeh et al. [21] studied the thermal
divergence of FGM flat rectangular panel and geometric
parameters such as plate aspect ratio and relative thickness, as
well as gradient index on critical temperature and divergence
boundaries for uniform and linear temperature distributions.
Hosseini et al. [22] studied nonlinear flutter characteristics
of functionally graded curved panels under high temperature
supersonic flow. Marzocca et al. [23] presented a review of
nonlinear aerothermoelasticity of functionally graded panels.
Navazi and Haddadpour [24] investigated aeroelastic stability
boundaries and nonlinear supersonic flutter behavior of
functionally graded plate based on mid-surface formulation
and showed that under real flight conditions and using
coupled model, the aerodynamic heating is very severe and
the type of instability is divergence. Sofiyev [25] investigated
buckling of freely-supported FGM truncated and complete
conical shells under external pressures in the framework of
the shear deformation theory. He also studied the vibration
and stability of FGM conical shells under a compressive axial
load using Galerkin method [26].

So far, different numerical techniques have been utilized
for flutter studies. However, the methods having greater
accuracy and much less computational complexity (and
effort) are of most interest to researchers. One method that
has been widely considered in the recent years is Generalized
Differential Quadrature Method (GDQM). In addition to
the ease of implementation, GDQM also provides increased
efficiency and accuracy by demanding less number of grid
points in comparison to another method such as FEM [27].
The DQ method was first presented by Bellman and Casti
[28]. The main idea behind DQM is that the derivative of a
function with respect to a space variable at a given point is
approximated as a weighted linear sum of the function values
at all discrete points along the domain of that variable. DQM
has been applied to solve various structural elements such as
beams, plates and shells. Bert et al. [29] applied the DQM
to investigate the static and dynamic response of structures
for the first time, and afterward it was improved by Bert and
Malik [30]. Also, Bert et al. [31] used DQM for composite
plates for the first time and analyzed nonlinear bending of
orthotropic rectangular plates. Then, Shu and Richards [32]
presented the GDQM to simplify the computation of the
weighting coefficients. Shu and Wang [33] applied GDQM
for vibration analysis of a rectangular plate with combined
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and non-uniform boundary conditions. Fazelzadeh et al. [34]
investigated the vibration of a rotating thin walled blade
made of functionally graded materials (FGMs) operating
under high-temperature supersonic gas flow with DQM.
GDQM applied by Tornabene et al. [35] to study the dynamic
behavior of FGMs and laminated doubly-curved shells and
panels of revolution with a free-form meridian. They verified
the accuracy of GDQ method by using commercial programs
such as Abaqus, Ansys, Nastran, Straus and Pro/Mechanica.
Tornabene et al. [36] applied GDQM to investigate shear
strains and stresses in statically deformed FG doubly-curved
sandwich shell structures and shells of revolution using the
generalized zigzag displacement field and the Carrera Unified
Formulation (CUF). Also, Tornabene et al. [37] analyzed
doubly-curved laminated composite shells using different
kinematic expansions along the three orthogonal directions
of the curvilinear shell model using Local Generalized
Differential Quadrature method (LGDQM).They showed
that the LGDQM compared to the GDQM needs a large
number of grid points without losing accuracy and keeping
the very good stability features of GDQM. Generalized
Differential Quadrature Finite Element Method (GDQFEM)
used by Fantuzzi et al. [38] to study the free vibration of
moderately thick FGM plates with geometric discontinuities
and arbitrarily curved boundaries. At last through 2015, an
excellent review of Differential Quadrature Method in a
complete way was presented by Tornabene et al. [39].
Shahverdi et al. [40] used GDQM for aerothermoelastic
analysis of functionally graded plates and applied the first
order piston theory to consider the supersonic acrodynamic
loads on the plate. The material properties of the FG panel
were assumed to be temperature independent. So the static
and dynamic stability margins of simply support FG plates
were analyzed for various volume fractions. Shahverdi and
Khalafi [41] investigated aero-thermo-elastic behavior of
2-D functionally graded curved panels under simultaneous
aerodynamic and thermal loads in hypersonic flow using
GDQM.

To the best of the authors’ knowledge, GDQM has not been
employed in hypersonic panel flutter studies in the literature.
In present work, the hypersonic acroelastic analysis of a FG
flat plate in the presence of thermal loading is investigated
using GDQM.

In this regard, the governing differential aeroelastic equations
of a FG plate are first discretized using GDQM, and then
the aerothermoelastic response of the plate is studied by the
fourth order Runge-Kutta method. To show the accuracy and
reliability of the GDQM, the dynamic stability boundaries of
a FG plate are validated with available results presented in
the literature. Also, the effects of some important parameters
such as Mach number, in-plane thermal load, plate thickness
ratio, and volume fraction index on the aerothermoelastic
behavior of the FG plate are examined as well as physical
neutral surface effect.

2- Formulation

2- 1- Structural model

A rectangular FG panel with length @, width b, and thickness
h is considered. The airflow is assumed in the x-direction.
The FG panel is assumed to be composed of a ceramic and
a metal, and the volume fraction of the functionally graded
material varies continuously through the plate thickness
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according to a simple power law [17]. Hence:

z+h/2Y
Vi _( h ) )
v, +V.=1) )

where z is the coordinate in the thickness direction with origin
at the plate mid-surface and n is the volume fraction index.
Material properties of the functionally graded plate are
assumed to vary continuously across the plate thickness
according to the simple rule of mixtures as follows [17]:

IDeff = Pme +1)L‘VC (3)

P z+h/2] P, @)

. =(P.—P
eff ( c m)( h

where subscripts ¢ and m refer to ceramic and metal,
respectively, and P is the effective material properties of the
plate corresponding to the modulus of elasticity £, Poisson’s
ratio v, density p and thermal a coefficient expansion .
However, in high-temperature environments, the temperature
dependency of material constituents must be taken into
account. Thus, temperature-dependent properties, P, can be
obtained as follows [20]:

P=P,(P.T ' +1+PT'+PT*+PT") (5)

where P, P_, P, P,, P, are constants, and 7 (in Kelvin) is the
environmental temperature.

the Classical Plate Theory (CPT) based on the position of the
neutral surface is developed here.

Based on the Classical Plate Theory (CPT) and the physical
neutral surface concept, the displacement field of the plate is
[42]:

U, p 2 0) =ty (5,7 0) — (2 —2,) 200
Ox
v(x,y,z,t)=v,(x,y,1)-(z —ZO)W (6)
v

w(x,y,z,t)=wy(x,y,t)

where u,and v, are in-plane displacement components, and w,
is out-of-plane displacement component of neutral surface. z,
is the distance of the neutral surface from the mid- surface of
the plate and can be determined from the following equation
as [43]:

J:%ZE (z)dz
zo=— (7
BE(z)dz

2

The von Karman nonlinear strain-displacement relations, the
nonlinear strains are expressed as:

XX uO,x w 0,x
2
w [T Vo y += w 0,y
Xy uO,y +v 0,x ZM} O,xw 0,y
®)
--w

The thermoelastic constitutive equations of the FG panels are:

O« 0, 0, 0 |le, —a(Z Vi )AT (z)
Oy (= 0, 0, 0 |j&, —a(z T )AT (z) 9)
Oy 0 0 O &y

AT (2)=T ()T, )

where T, 7(z) and a(z,T) are reference temperature, the
temperature distribution in the plate thickness direction and
thermal expansion coefficient, respectively. Q,.j is the stiffness
coefficient matrix and is defined by:

o - EG®

Q“_QZZ_I—V(Z)Z
_V()E@)

Q=T 0y (1)
__E@)

Qe = 2(1+v(2))

where E(z) is the elastic modulus of a FG panel.
In-plane force resultant and out-of-plate moment resultant are
obtained as follows:

N| [A B]j{e'}| [N

M| |B D (k}| ™ (12)
Here, NT and MT are the thermal in-plane force moment
resultant vectors. Thus

, a(z)
(NT,MT)=B(1,Z)Q a(z) v AT (z )dz (13)
2 0

where A, B and D represent extensional, bending—extensional
coupling, and bending stiffness matrices, and are given as
follows:

h
(4,,B,,D,)=[30,(1,(z =2,),(z =2,)")dz (14)

Above neutral surface based formulation change to mid-
surface formulation when z,=0.

Here, It should be noted that due to Eq. (7), the extension-
bending coupling matrix, B, defined by Eq. (14) always
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equals to zero in the neutral surface based formulation.

2- 2- Aerodynamic model

Piston theory represents an inviscid aerodynamic model
that has been used extensively in supersonic and hypersonic
aeroelasticity. So, piston theory which provides a simple
point-function relationship between the unsteady pressure
and surface deformation [16], is used in this study. According
to the third-order piston theory, the aerodynamic pressure
may be expressed as [15]:

1 ow ow y+1 1 ow 6w
—_—t— |+ —M —
2, |\U, ot dx 4 U ot 6x
" 09
4 +1 IVE 1 ow Lo ow

12 U, ot ox
where g_, M and U_ are the dynamic pressure, Mach number,
and the free stream velocity, respectively. It must be noted
that the difference between the third-order piston theory and

first-order one is the existence of the second and third terms
(nonlinear terms) in Eq . 15.

Ap =

2- 3- Temperature distribution

The temperature distribution on the surface of the plate is
assumed to be constant while in the thickness direction it is
considered to be variable and may be obtained by solving the
one-dimensional Fourier equation of the heat conduction,
which is

d dT

T and T are the temperatures of the lower and upper
surfaces of the panel, and temperature distribution in the plate
thickness direction is obtained as follows [44]:

T=T. a z =£
0, (16)
T =T

m

at z =——
2

z 1
K(z T)
2 ! dz
2 K(z,T)

T(z)=T, +(T,-T,) (17)

2- 4- Equations of motion

By using the virtual work principle, the nonlinear governing
equations of motion can be obtained. In the absence of surface
shearing forces, body moments and inertia forces in the x and
v directions, the aeroelastic equations of a FG plate are [31]:

N, ,.,+N,, =0
N,,+N, =0

2
Mxv XX +2Mxy Xy +M vy LYy XX aM}Z (18)
X A »X) RAEDY % ax
o ow
2N ———+N —+Ap, =
vy oyt Te T

220

where,

I,= j"}f/zz oz )z (19)

By incorporating Egs. (9) and (12) into Eq. (18), the equations
of motion are obtained as follows:

oe
agxx +A12 Yy +B11 akxx

Ox Ox Ox

All
(20)

(e2y)

(22)

2 2
+2N | a—W+N, aw
7 Ox Oy !

With differentiating from Eqgs. (20) and (21) with respect to
the variables of x and y, respectively, and adding the resulted
equation, we will have:

de o', 'k o'k,
~— + 4 +B ~—+ B
11 2 12 2 11 2 12 2

ox ox Ox ox

de. Ok de de.
—+ B —+ 4 4+ 4 - (23)

12 2 2 2

“oxdy " oxoy oy

ok Ok oe Ok
+B,—=+B, ——+4, ——+B ——=0
oy oy Ox Oy Ox Oy
By multiplying to Eq. (22) and to Eq. (23) and collected
them together after some mathematical manipulations, the
following equation is obtained:

+A6
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(DIIAII —an) azk; (DIIAII _Bllz) 62k)3’
~+vV

2 2

A Ox A Ox
(DllAll _Bll2) 62k (DllAll _Bllz) aZkJ’J’
+v —+ -
A, Oy A, oy
2 (24)
1_V (DIIAII _BIIZ) a k‘)" azw
+2 —+N  —
2 A Ox Oy Ox
o'w o'w -
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The above equation can be written as:
d'w d'w o'w o'w o'w
D | ——F+2—F——F+—— |+N_ ——+2N
ox ox oy 0oy - Ox ~ Ox Oy
) (25)
a‘w .
N ——+Ap +1w =0
) 6y 2
where,
DllAll _Bllz
= (26)

In this paper, the plate is considered to be simply supported
along all edges and, therefore, the in-plane displacement
components Ou/0x , Ov/0y , ou/Oy , Ov/Ox are equal to zero
and, based on this assumption, in-plane force resultants can
be modified as (see[5, 42]):

b o 1 ow | 1 ow ow ow ,
N, :J' j (A”—(—) +A —(—) -B,——-B_ — ]axdy -N.
oee 2 ox 2 oy 0'x 0y
y e 1 ow 1 ow o
N, =[ J-"(AD—(—)'-#AH—(—)'—BD ", ay -N T (27)
2 ox 2 oy o'x
N, :J‘"J'“(Abhalal-wm aw }dey
e ox oy 0Ox Oy
By substituting Eqgs. (15) and (27) into Eq. (25), the

aerothermoelastic equation is obtained as:

(28)

The following sets of dimensionless parameters are defined
as follows:

w X
W = é’ =
h a
Y qua3
}7 = =
b MD
/2 (29)
p.a D
M= T=t
p h p ha
N 'a N b’
RX — XX Rv — Yy
D ' D

By incorporating the above parameters in Eq. (28), the non-
dimensional form of aeroelastic equations can be obtained.
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3- Procedure of Applying GDQM
In this section, the governing aeroelastic equation is
discretized by using the GDQM. This method implies that the
rth-order derivative of a function ¥, at a point s= s, , with N
discrete points can be estimated by

N
S =2 ATW, (31

The coefﬁcientAij(")S represents the weights (j=1,2,..., N) at the
point i. The method for constructing the weighted coefficients
can be found in Chang Shu [39].

The DQ method may also be used for linear combinations of
partial derivatives and integrals [45] as follows:

a("fSWS _ if AL AW, (32)
Ox "0y k=11=1
a pb N M
[ W Geoyydedy =D ee (33)
k=1 1=1

where ¢, , ¢, are weighting coefficients of the one-dimensional
integral in the x and y directions respectively, and are given
by [45]

c, =HW —H™ :I:”k (x )dx (34)

Jk ik

222

¢\ =H | —H " = [ r )y (35)
where
I(X) (A(l)x)f Hl(y):(A(l)y)*l (36)

In the above equations r(x) and r(y) are the Lagrange
interpolated polynomials. By using the GDQM, the discretized
form of the governing equations (Eq. (30)) can be written as:

I, » D, aY LU @ 4,
p_hW++D_ +2 ; ZZAyiklijkZWklkz
4

2 N M
abh” S N, AP AV ADW W W,

mklmnlpl

]l

372 N
h 4 / X
) S cre, AT AD AW, W W,

m k,J0=1p,q.s=1

bh N M
—B“aD— z chcp

m k.,.,n=1p=1

+4
@)x 4 (2)x
Akn Ail anW[/

Z Zc c, A" APW W,

P rq
m k.l=1p.g=1

12 bD

ik 1

ah’ & N ()x <1>v x4 )y
A —— . Z c e, Ag AN AN AW W W
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Mx My 4 Dx gDy
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b m k.kln=1pk2qg=1
332 N M 37)
a’h (
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+4,, > > e ANTAY AW W W
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ath N M
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3
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(2)‘ (2),v
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m k.,n=1p,q=1
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-R, ZAzkl Wklj (ZJ ZAijW
k1=1 k2=1
N
+A| D APW, L+ (
k1=1

+

2
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k1=1
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Also, the assumed boundary conditions may be written as
follow:M

w(0,y,t)=0, M_ (0,y,t)=0
w(a,y,t)=0, M (a,y,t)=0
w@.00)=0, M, (x.06)=0 (38)
w(x,b,t)=0, My(x,b,t)=0

By incorporating the boundary conditions into Eq. (37)
and doing some manipulations, the final aerothermoelastic
equation of a FG plate can be drawn as:

Sew, 2] 5
CW, + cyw,
1, Vi;+D k=3 Y 3 ’

eq

pmh Dm ( \JZNZMZ

Z Z CZWklkZ

k1=3k2=3
abhz N-2 M-=2
+A, —— D > Y ew WL w,
m k,,m.n=3 p=3
ah2 N -2 M-2
+4 cw w W.
122mekl =3 m§3 Ty
abh & =2
By > CwLw,
m k,,n=3 p=3
M -2

372 _ _
ah N-2 M2

Z CBWkanqu 1k2

m k.k1,n=3p,k2,q=3
3 N -2 M -2
a'h
4366 bD Z CJ/anWklkz

(39)

N=-2

Rr z C14Wk]

K (Zj MZZC”W”‘ +i(iC16Wku+( i J
+/1( h]yil[ZCwW“/Jr( H )/Wj
a

k1=1

WY y+1( & TN/
+A(M —j F(ZCWW}CU "r(m) 2W :O

a k1=l

where C, to C, are defined in Appendix A.

4- Results and Discussion

In this section, the aeroelastic behaviors of FG plates are
calculated to investigate the validity of the GDQM for
determining flutter characteristics. In this regard, a simply-
supported square (a/b=1) functionally graded flat plate made
of a combination of metal (SUS304) and ceramic (Si3N3) is
considered as a test case. The material properties are listed in
Tables 1 [24].

In order to obtain the flutter instability, the governing
aerothermoelastic equation (Eq. (39)) is utilized by
considering 11 x 11 sample points in the computational
domain. However, after some investigations, it was found that
the present nonlinear analysis is extremely sensitive to the
sampling point distribution. Thus, Chebyshev-Gauss-Lobatto
distribution is not a right choice for this type of problems, but
the suggested distribution by Tomasiello [46] can be used as
an alternative choice. Then, the resulting ordinary differential
equations are solved via the 4th order Runge-Kutta method.
First of all, the limit cycle amplitudes of an FGM square plate
for various dynamic pressures at the specified location on the
plate surface ({=x/a=0.75 and n=y/a=0.5) based on neutral
surface formulation are computed and depicted in Fig. 1. As
it is evident, the GDQM results are in satisfactory agreement
with those presented in Navazi [24], which use mid-surface
based formulation and time integration method.
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N
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=
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Fig. 1. LCO amplitudes of an FG square plate

The limit cycle amplitudes of an FGM plate (a/b=1, a/h=100)
at M=5 for various volume fraction indexes are shown in Fig.
2.

The variation of limit cycle deflections (w/k) with respect
to non-dimensional dynamic pressure, A, is presented in this
figure for both neutral surface based and mid-surface based
formulation. It can be concluded that the results of two
aforementioned reference surfaces are very close together for
thin plate theory applications. It is found that a slight increase
in 1 can dramatically increase in w/h. Also, the critical
pressure will be decreased by increasing the volume fraction
index (n).

Next, the critical pressures, in which flutter occurs, for the FG
panel with various volume fractions and two different values
of T have been tabulated in Table 2. It is clear that increasing
the Mach number has little effect on the critical pressures.
On the other hand, the increase of volume fraction index
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Table 1. Temperature dependent thermoelastic material properties

Material P P P

P P P

0 -1 1 2 3
SUS304 E(Pa) 201.04E9 0 3.079E-4 -6.534E-7 0
a(1/K) 1.23E-5 0 8.086E-4 0 0

Si3N3 E(Pa) 348.43E9 0 -3.07E-4 2.16E-7 -8.946E-11
a(1/K) 5.8723E-6 0 9.095E-4 0 0

Table 2. Critical non-dimensional dynamic pressure

y) y) y) y)
Temperature changes . o LT LT LT
of the surfaces n Linear piston the- Nonlinear piston  Nonlinear piston  Nonlinear piston
ory (u/M=0.01) theory (M=2) theory (M=5) theory (M=8)
T =300 n=0.0 629.75 629.51 629.22 629.20
T =320 n=0.5 542.23 541.83 541.38 541.06
n=1 462.16 461.86 461.24 461.09
n=5 409.96 409.78 409.22 408.98
n=oo 308.04 307.95 307.58 307.48
T =310 n=0.0 553.46 553.08 552.34 552.12
T =320 n=0.5 452.20 452.04 451.58 451.46
n=1 365.03 364.89 364.63 364.49
n=5 311.60 311.52 311.24 311.17
n=oo 214.49 214.46 214.38 213.96
0.8 Mid-surface-based formulation / 800 .
= emmrmimmn Neutral-surface-based formulatiop/ B
I S Tm=300, Te=300
ab=1, a/h=100, M=5 phy ] —me Tm=300, Te=305
i &=0.75,, n=0.5 700 ks, — — —— Tm=300, Te=310
0.6~ j’\. Tm=300, Tc=320
i ’\\\\ ab=1, a/i=100, =3
: 600\
S b <
: 500
021
i 400
o0 '5;0‘ = ‘6;0‘ —— ‘s;o‘ — ‘9;0‘ 1000 3005 2 4 6 8 70

700
n

Fig. 2. LCO amplitudes of an FG square plate for both mid-
surface and neutral surface based formulation

and lower surface temperature of the plate (7)) for the same
volume fractions leads to reduced critical dynamic pressure.
Then, the effects of top surface temperature of the plate (7))
on critical dynamic pressure are presented in Fig. 3. It can
be seen that the critical dynamic pressure increases with
decreasing of the top surface temperature of the plate for
the same volume fractions. It is clear that critical pressure
is greatly decreased up to n=1 for any values of 7 and T.
However, after that value of n the reduction rate of critical
pressure decreases in linear fashion.

Also, the effects of the thickness ratios (a/h) on critical
dynamic pressure are presented in Fig. 4. As the figure shows,

224

Fig. 3. Effect of surface temperature (7)) on the critical
dynamic pressure of a FG plate (M=5)

the critical dynamic pressure decreases with increasing the
plate thickness ratios (a/k) at the same volume fractions.
Moreover, the variation of critical dynamic pressure with
respect to thickness ratios (a/h) is more dominant for the case
which has a higher value of surface temperature (7).

The bifurcation diagrams for maximum deflection amplitude
of a FG plate (a/b=1, a/h=100), with A=500, versus upper
surface temperature, 7, for two values of n and M, are
depicted in Figs. 5 and 6.

It is clear that as the volume fraction index () increases, the
bifurcation point shifts to the left side of this figure and the
chaotic motion occurs at the lower value of upper surface
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Fig. 4. Effect the plate thickness ratios (a/4) on the critical
dynamic pressure of a FG plate (M=5)
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Fig. 5. Bifurcation diagram of FG plate under increasing 7,
with =500, M=3 and T,=300 k. (a) n=3, (b) n=10
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Fig. 6. Bifurcation diagram of FG plate under increasing 7,
with =500, M=8 and 7 ,=300 k. (a) n=3, (b) n=10

temperature. On the other hand, when the Mach number
increases, the chaotic motion occurs at the lower value of
upper surface temperature (7).

The effect of using the first and third- order piston theory
on the aeroelastic response of the FG plate is shown in Fig.
7. In this figure, the limit cycle amplitude of the FG plate
at the aforementioned point (¢=0.75 and #=0.5) versus the
critical dynamic pressure for various volume fraction indexes
is shown. It was found that when the Mach number is set
to 2.0, the results of the implementation of the linear and
nonlinear piston theory show very little difference. But this
difference is greater when Mach number increases toward the
hypersonic regime specifically for greater non-dimensional
dynamic pressures.

The aerothermoelastic stability margins versus in-plane
thermal load for the FG plate for various volume fraction
indexes are shown in Fig. 8. It can be seen that as volume
fraction index decreases, the critical thermal buckling load,
the critical dynamic pressure and the in-plane thermal load,
where the chaotic motion begins, all increase. As a result, the
bifurcation point shifts to the top right.
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Fig. 7. LCO amplitudes of an FG square plate under different
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The effect of the Mach number on the aforementioned
aerothermoelastic stability margins of the plate with n=1 is
shown in Fig. 9. It can be seen that most changes occur at
the common boundary of the chaotic and LCO regions. Thus,
the increase of Mach number causes the chaotic region to
extend toward the LCO region while these changes are not
considerable at the other boundaries.

Time history response and the related phase diagram and
frequency spectrum diagram at a specified condition (n=1,
R =R =5. 57%, 2=380) are shown in Figs. 10 to 12. The limit
cycle with 31mple harmonic motion of plate under airflow
with the Mach number M=2 is depicted in Fig. 10. As the
Mach number increases (M=5), the simple harmonic motion
remains periodic but not simple harmonic, as shown in Fig.
11. If the Mach number increases again (M=8), the periodic
motion becomes a chaotic motion, as shown in Fig. 12. This
figure can explain the extension of the chaotic region in Fig.
9. As it is evident, as the Mach number increases the envelope
of the frequency spectrum covers more frequencies and
reveals the occurrence of a chaoic behavior in the aeroelastic
system.
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5- Conclusions

In this study, the GDQM has been used to obtain the
ordinary differential form of the aerothermoelastic equations
of a FG flat plate in hypersonic regime. To investigate the
aerothermoelastic behavior of the plate, the 4th order Runge-
Kutta numerical method has been utilized. The evaluation
of the obtained results in comparison with those available in
literature shows the fidelity and ability of the GDQM to study
the aerothermoelastic behavior of a FG panel in hypersonic
regime. However, it should be noted that the application of
this method is much simpler than other well-known methods
such as (Galerkin, FEM). Also, it was found that the nonlinear
panel flutter analysis with GDQM is extremely sensitive to
the grid point distribution. So, the well-known Chebyshev-
Gauss-Lobatto distribution is not suitable for this type of
problems, but Tomasiello’s distribution [46] can be used as
an efficient and suitable choice.

The obtained results showed that the using of physical neutral
surface concept in the derivation of the aeroelastic governing
equations led the same results for the response of a FG panel
which uses mid-surface based formulation in conjunction with
thin plate theory. Finally, this study reveals that increasing of
the surface temperature of a FG plate leads to decrease in
critical dynamic pressure due to the reduction of structural
Rigidity. The results showed that the increase of Mach number
has little effect on the flutter onset velocity. In addition, it
was shown that when a FG plate is exposed to supersonic
airflow, the use of linear and nonlinear acrodynamic piston
theories does not make much difference. But with Mach
number increasing toward hypersonic flow, this difference
becomes significant. Also, the increase of Mach number can
cause the chaotic region to expand the flutter (LCO) region
in the stability margins diagram. Also, in-plane thermal load,
thickness ratio, and surface temperature (Tc) were found to
have significant effects on the critical dynamic pressure and
stability margins of a FG plate.

Appendix A

The C, coefficients in Eq. (39) are defined through the
following relations:
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