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ABSTRACT: Rotor vibrations and its control is an important subject in many industries such as power
plants and gas stations. When lateral vibrations of rotors during operation exceeds allowable level, a
huge damage will be occurred. Surge and stall may be some common reasons of these vibrations. This
paper aims to present a simple model for surge and stall and assumes that its effect as a concentrated
force acting on a rotor-disk system. This is a basic and conceptual model for future investigations in
this area. Therefore, the effect of a concentrated axial force exerted on an assembled disk on a rotating
shaft is investigated theoretically. Equations of motion are derived using Timoshenko beam theory. This
governing equations consist of four coupled partial differential equations. Since these equations are
complex, coupled and have time-varying coefficients, they are solved using a combination of Galerkin
and Newmark methods. Numerical examples are analyzed as well. The accuracy of these equations is
verified for a simple beam. Results indicate that the axial load has a considerable effect on the lateral
vibration amplitude of the rotor and this simple proposed model can be improved for next studies in this
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1- Introduction

Rotor Dynamics is a branch of dynamic systems dealing
with Rotor systems are widely used assemblies for power
transmission in various kinds of machinery. The lateral
vibrations of the rotors must be limited because excessive
vibrations will affect the running status of it and may lead
to catastrophic accidents. Due to several factors, which
contribute to the energy transfer, the rotor rotations generate
different modes of vibrations: lateral, torsional and axial
modes. Among these modes, the lateral is of the greatest
concern [1]. The simplest model that can be adopted to
study the flexible behavior of rotors consists of a point mass
attached to a massless shaft, often referred to as Jeffcott rotor.
Rotors of turbines and compressors carry one or more disks.
When flexible rotors are assessed it is a common practice to
neglect axial forces and the interaction between these forces
and radial vibration.

In general, axial forces are indeed small therefore are not
considered. In aircraft engines, the thrust generates axial force
in the rotor system. In compressors stall and surge phenomena
can generate horizontal force on disks. These forces may be
constant, while in rotating machinery is specific, they may be
harmonic or random. This is the main motivation of current
research.

Nelson et al. [2] Studied the vibration analysis of the
Timoshenko rotor with internal damping subject to axial load.
Edney et al. [3] presented the dynamic analysis of the tapered
Timoshenko rotor. Chen et al. [4] analyzed an exact and
direct modeling technique for rotor bearing system subject to
axial load. Choi et al. [5] presented the consistent derivation
of a set of governing differential equations describing the
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vibration in two orthogonal planes and the torsional vibration
of a straight rotor with dissimilar lateral principle moments
of inertia, subject to a constant compressive axial load.
Huajian Gouyang et al. [6] presented a dynamic model for
the vibration of a rotating Timoshenko beam subjected to a
three- directional load moving in the axial direction. Askarian
et al. [7] assessed the effect of various parameters like axial
force, unbalance, and coupling misalignment on vibration of
arotor. Nawal H.Al et al. [8] derived the equation of motion
that governs the transvers vibration of a beam loaded axially
and compared the natural frequencies thereof. Motallebi et al.
[9] adopted a homotopy analysis based method to assess the
vibration of a nonlinear beam subject to axial force. Torabi et
al. [10] presented an analytical solution for whirling analysis
of axial-loaded Timoshenko rotor and corresponding basic
function.

In this study the dynamics of a rotating shaft, modeled as
a Timoshenko rotor, subject to concentrated harmonic load
acting on the surface of a disk on the rotor is investigated. For
this, the dynamic equations of lateral vibrations of the rotor
are derived using Timoshenko beam model and Newton’s
second law. Then, this governing equations are solved by
Galerkin and Newmark method. Then, numerical simulations
are carried out and the effects of force magnitude are analyzed.

2- Governing Equations and Solution Procedure

A simply supported Timoshenko rotor subject to axial force
acted on a disk is shown in Fig. 1.

As observed in Fig. 2 bending moment is due to concentrated
load:
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Fig. 2. Concentrated load position on the disk

m, =PRcospd(z —z,)

m, =PRsingd(z —z,) M
where, R is the radius of the force point and @ is the angle of
the force with x axis.

By applying the equilibrium of forces and momentums, the
set of equations of motion are extracted as follows:
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Where u_ U, and ¢, are components of dlsplacement and
rotation in x and y dlrectlons respectively; p is mass density.
In addition A, /_ s and I are cross- sectional area, moment
of inertia about the x and y axes and polar moment of inertia,
respectively; /. and f and P are forces per unit length in x and
y directions and axial force.

According to Timoshenko beam theory, components of
bending moment (M) and shear force (F) in x and y directions
are presented as follows [11]:

F, =kGA (a"x j
0z

]

ou
F =kGA <
d 0z

5 (3)
M, =E1 %
| oz
29,
M, =EI,—

Were E and G are the modulus of elasticity and shear modulus,
respectively; k is the shear correction factor depending on the
shape of the section and Poisson’s ratio of material [12]. By
neglecting the term of (dz)* and using the following relation
for a circular section
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Eq.(2) can be written as:
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where, R, and P, are the reaction of force in the support and
axial force exerted on disk.

The force at the cross-section of the rotor is written as:

P(zt)=-R,—P,(t)H (z—z,) 6)
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By re-arranging, the equations of motion can be written:
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By introducing the following complex variables:
u=u_+ju,
P=0.tJjo,
f=f.+if,

and the external forces consisting weight and unbalanced
force written as:

f(xt)=f (x.t)+f,(x,t)=pdg -
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where, M, is the disk mass, m is the unbalanced mass, e,is
the unbalanced radius and 6, is the angle of unbalanced mass
with respect to horizontal axis, the following set of equations
of motion is yield:
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For a rotor with simple support the following equation must
be met:
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The solution of Eq.10 is assumed as:
u(z,t)= Zan (1 )sin(niLTZ )
n=1
(12)

Inserting Eq.12 into Eq.10 and then running the required
simplifications the following equations are obtained:
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By applied Galerkin method Eq.13 is rewritten as:
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The simplified form is briefed as:
prIfx O+ C1E @)+ [x OJfx O}=[F )] a9

3- Numerical Results and Discussion

3- 1- Free vibration

In order to determine the forward and backward rotor
frequencies for free vibration, we have the following
definitions:

N~ jm .. N7z
u(z,t)—z:lane sin—
" (16)

In this regard, w is the natural frequency of the whirling. By
applied Galerkin method can be written:

(0’ [M]+o[C]+[k]){x }={0} (17)

In order to obtain an unbiased zero response in (17), the
determinants of the coefficients must be zero; in other words:

|’ [M ]+o[C]+[k]=0 (18)

By using equation (18), the natural frequencies will be
obtained for the motion of the whirling. Given the coherent
coefficients in the stiffness matrix, all the roots of the equation
will be purely imaginary, and they will result in forward and
backward frequencies.

Initially, a rotor of length =3 m and diameter d=40 mm
without axial force was investigated, the results of which
are shown in the form of Campbell diagram for the first and
second modes in Figs. 3 and 4.
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Fig. 3. The Campbell diagram of the first mode of rotor
without force with d=40mm
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Fig. 4. The Campbell diagram of the second mode of rotor
without force with d=40mm

Also for d=60mm corresponding Campbell diagram are
depicted in Figs. 5 and 6.
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Fig. 5. The Campbell diagram of the first mode of rotor
without force with 4=60mm
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Fig. 6. The Campbell diagram of the second mode of rotor
without force with 4=60mm

As can be seen, the frequency increases as the diameter
increases.

In order to investigate effect of axial forces on Campbell
diagrams, we apply force 100000 N/m? in the middle of the
rotor. The obtained results are shown in Figs. 7and 8.
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Fig. 7. The Campbell diagram of the first mode of rotor with a
force of 100,000 N/m? (d=60mm)
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Fig. 8. The Campbell diagram of the second mode of rotor with
a force of 100,000 N/m? (4=60mm)

Applying this force will decrease the frequency of the system
in the first mode. Also, in the second mode the system
frequencies begin to increase. These trends depend on the
position of the force. There exists an appropriate agreement
between results of this study and [8].

3- 2- Forced vibration

In order to present and analyze the results obtained in this
study, some specifications of the subject rotor are selected
from Table 1.

Table 1. Considered rotor characteristics

Characteristics Value 33:2‘:;1122
Rotor diameter 50 d (mm)
Rotor length 4 L (m)
Modulus of elasticity 200 E (GPa)
Poisson's ratio 0.3 v
Density 7860 p (Kg/m?)
Location of disk L2 z,
Mass of disk 5 M, (Kg)
Moment of inertia 2 I, (Kg.m?)
Unbalance mass 10 m} (gr)
Unbalance radios 50 e, (mm)
Unbalance angle with x direction 45 0, (degree)
Rotational speed 50 Q (rpm)

In order to examine the accuracy of the drawn up codes, the
rotor was first modeled as a simple beam without rotation,
while the results were compared with the accurate solution to
the problem. The results were then obtained through assuming
0=1/2, f=1/4 and At=0.01 in Newmark-beta solution [13] and
by taking into accounts the first five sentences of Galerkin
solution (N =5) by coding in the MATLAB software.

Given that there is no reference to verify the results, modeling
method and the drawn up codes, the axial force, and the rotor’s
rotation were removed; and merely a model of the beam with
a simple support was taken into account. Therefore, the extent
of motion at the left support and the shear force along x axis
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in the left support of the rotor were calculated and shown in
Figs. 9 and 10.
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Fig. 9. Displacement in the left support (x direction)
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Fig. 10. Shear force in the left support (x direction)

The results have reveals that a constant force of approximately
284 Newton is exerted on the left support. The extent of
motion at the rotor’s left support is zero corresponding to that
of the system. The error percentage among values and their
analytical solutions found hear are tabulated and compared
in Table 2. The result of the analytical solution is obtained
from the static solution and the material strength .There exists
an appropriate agreement between results and the drawn up
codes of this study and [14].

Table 2. Comparison between the present method and the
analytical results

Analytical Present Error
Parameter . .
solution solution percentage
F.,N 301 284 5.7

To confirm the procedure applied in rotor rotation we will
consider a rotor with a disk in the middle with the given
specifications is considered. The resulting displacement is
equal with a simple Jeffcott model. where, the rotor’s will
be modeled with a mass and spring to a degree of freedom.
The equations governing the Jeffcott rotor in two directions is
expressed as follows [15]:

M uc+ku, =mjeQeos(Qt + ) (19)

eff

96

M uy+ku, = mye,Q%in(Qr + )

Which we have in these equations:

1
Meff = MO + E rotor
(20)
k)( = kV = 4i§I

The displacement diagram in x directions of this study against
Jeffcott model is compared in Fig. 11.
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Fig. 11. Displacement in the middle of the rotor (x direction)
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The high compatibility of this model with the Jeffcott model
is observed in the same figure.

In order to study the effects of axial load on the responses,
a harmonic axial load on the disk is considered with an
amplitude and frequency of 20 kN and 5 rad/s, respectively, at
a radius of 30mm and a 45° angle to the horizontal direction.
The shear force at the left support for the unbalanced rotor
with axial harmonic force of p=20sin(5¢) is shown in Fig.12.
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Fig. 12. Shear force in the left support (x direction)

The displacement in the middle of the rotor in the x direction
is shown in Fig. 13.

The bending moment in the middle of the rotor in the y
direction is shown in Fig. 14.

As observed in this set up the average value of the shear
force in the support is increased and oscillated due to both
the unbalanced and horizontal forces. In order to check the
effect of increased horizontal force the amplitude of the same
is increased here.
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As to the unbalanced rotor with axial harmonic force of
p=20sin(5¢) the obtained results are shown in Figs.15-17. In general, these results indicate which forces are created
horizontally the effects of stall and surge can increase the
500 amplitude of rotor lateral vibrations. Consequently, by

measuring the vibrations in the bearing of the system, it is
possible to detect the occurrence of these phenomena because
0 they can lead to system failure.

4- Conclusions

00 The effect of axial concentrated forces on lateral vibration of
arotating shaft of the disk with central mono-disk is analyzed.
This rotor is assumed to be uniform and the Timoshenko
1000+ theory is adopted here. The partial differential equations of
motion are derived through equilibrium equations for an
element of the rotor. The rotor is a simply supported one and

0

F(N)

1500 : : : ‘ . the Galerkin-Newmark method is adopted directly in the

0 2 4 6 8 10 partial differential equations of motion. The results show that

£(s) the application of horizontal force in a rotor causes a change

Fig. 15. Shear force in the left support (x direction) in the critical speed of the system. Responses of the lateral

vibration for with and without axial force are analysed, and

As observed there exists a direct relation between horizontal it is observed that an increase in the amplitude of force leads

and shear forces. In this case, the force average value is to an increase in the amplitude and mean value of the shear

around 600 N which can rise up to about 1,100 N. This result force in the support, displacement and bending moment in the

can be applied in designing the bearings of the system. The center of the rotor. The results can be applied in analyzing the

amount of displacement and bending moment in the center phenomenon of surge and stall in gas turbines. If the forces

of the rotor increase. An increase in rotor displacement can at supports are measured and the changes thereof of concern,
cause rotor and stator contact, thus, a problem in the system. then, these phenomena could be identified.
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