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ABSTRACT: In this paper, an exact closed-form solution is presented for free vibration analysis of
Bernoulli-Euler beams carrying attached masses with rotary inertias. The proposed technique explicitly
provides frequency equation and corresponding mode as functions with two integration constants
which should be determined by external boundary conditions implementation and leads to the solution
to a two by two eigenvalue problem. The concentrated masses and their rotary inertia are modeled
using Dirac’s delta generalized functions without implementation of continuity conditions. The non-
dimensional inhomogeneous differential equation of motion is solved by applying integration procedure.
Using the fundamental solutions which are made of the appropriate linear composition of trigonometric
and hyperbolic functions leads to making the implementation of boundary conditions much easier. The
proposed technique is employed to study the effects of quantity, position and translational and rotational
inertia of the concentrated masses on the dynamic behavior of the beam for all standard boundary
conditions. Unlike many of the previous exact approaches, the presented solution has no limitation in a
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1- Introduction

Studying dynamic characteristics of systems with flexible
links or components is an essential research that can provide
a successful design of mechanisms, robots, machines, and
structures. Thus, vibration analysis of the beams carrying
concentrated elements is a classical problem in the structural
dynamics.

There is a weak possibility to find an exact closed form
solution for nonlinear vibration analysis of beams and plates
carrying concentrated masses and most of the relevant papers
used numerical and approximate approaches. However,
hitherto many studies have investigated the linear vibration
characteristics of beams carrying various concentrated
elements such as linear and rotational springs, point masses,
rotary inertias, spring-mass systems, multi-span beams, etc.
Chen [1] analytically studied the dynamic behavior of a
simply supported beam carrying a concentrated mass at its
center, considering the mass by the Dirac’s delta function.
A frequency analysis of a Bernoulli-Euler beam, carrying a
concentrated mass at an arbitrary position was presented by
Low [2]. He used the modified Dunkerley formula to obtain
frequencies of vibration of beams, carrying concentrated
masses. Laura et al. [3] obtained an analytical solution for
the determination of natural frequencies and mode shapes of
a clamped-free beam which was carrying a mass at the free
end. In a comprehensive paper, Dowell [4] focused on the
effects of mass and stiffness added to a dynamical system.
Laura et al. [5] presented a note on the transverse vibration
of continuous beams subjecting an axial force and carrying
concentrated masses by applying the Rayleigh—Ritz method.
Giirgdze [6] studied the approximate determination of the
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fundamental frequency and first mode shape of a beam with
local springs and point masses. Also, in another paper, he
investigated the vibration of restrained beams with heavy
masses [7]. Liu et al. [8] employed the Laplace transformation
technique to formulate the frequency equation for beams with
elastically restrained ends, carrying concentrated masses.
Using differential quadrature element method (DQEM),
Torabi et al. [9] presented a numerical solution for vibration
analysis of cantilever Timoshenko beams with non-uniform
thickness carrying multiple concentrated masses. Torabi et
al. [10] modeled concentrated masses by the Dirac’s delta
function and presented an exact closed-form solution for
vibration analysis of truncated conical and tapered beams
carrying multiple concentrated masses.

In most of the above literature, the effect of the rotary inertia
of the attached masses has not been considered. Regarding
the optimized Rayleigh methodology, Laura et al. [11]
investigated the fundamental frequency of vibration of beams
and plates elastically restrained against the rotation at the
supports and carried the finite masses and rotary inertias.
The free and forced vibrations of a uniform beam elastically
restrained against rotation at one end, against translation at
the other end, and carrying a lumped mass having rotary
inertia and external loading at an arbitrary intermediate
point was analyzed by Hamdan and Jubran [12]. Chang [13]
considered a simply supported Rayleigh beam which was
carrying a rigidly attached centered mass. He specified the
natural frequencies and normal modes of the system while the
position of the mass was supposed to be fixed. Zhang et al.
[14] presented the transverse vibration analysis for Bernoulli-
Euler beams, carrying concentrated masses and took into
account their rotary inertia at both ends. An exact solution for
the transverse vibration of Bernoulli-Euler beams, carrying
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point masses and taking into account their rotary inertia was
investigated in closed-form fashion by Maiz and his co-
workers [15]. They modeled general boundary conditions
by means of translational and rotational springs at both ends
and described the determination of the natural frequencies of
vibration for a beam with general boundary conditions. Like
most of the presented papers, their proposed method was
limited to a finite number of masses existing on the beam,
because of the increasing number of masses that leads to a
lot of computational effort and complexity. For instance,
when the discussed model was a beam with two concentrated
masses, three piecewise functions had to be considered
and twelve boundary conditions had to be applied to the
governing equations. While in the present investigation, the
formulation of governing equations in the presented technique
is derived as an infinite series of terms, including the effect
of concentrated masses and their rotary inertias. Therefore,
using this technique, a beam carrying an unlimited number of
masses can be solved with the less calculation.

Recently, transfer matrix method (TMM) has been used
by some authors to study the vibration analysis of beams
with concentered elements; e.g. Wu and Chang [16] studied
free vibration of axial-loaded multi-step Timoshenko beam
carrying arbitrary concentrated elements. Based on both
Bernoulli-Euler and Timoshenko beam theories, Torabi et al.
[17] studied free transverse vibration analysis of multi-step
beams carrying concentrated masses having rotary inertia. In
another work, they investigated the whirling analysis of axial-
loaded multi-step Timoshenko rotor carrying concentrated
masses [18]. Depending on the type of boundary conditions,
natural frequencies were obtained through the solution for a
determinant of order two or four for any number of lumped
elements. Unfortunately, in TMM an increase in the number
of point elements leads to a rise in the number of matrices
which should be multiplied consecutively and therefore leads
to a great increase in the size of components of the matrix in
the final determinant. This weakness increases computation
effort and limits this method in the number of concentrated
elements. In order to overcome this weakness, in this paper
using the concept of Dirac’s delta function, an exact closed-
form solution is presented for vibration analysis of beams
carrying attached masses with rotary inertias. Effects of
quantity, position and translational and rotational inertia of
the concentrated masses on the dynamic behavior of the beam
are investigated for various boundary conditions.

2- Mathematical procedure

According to Figure 1, a uniform beam with concentrated
masses located at spatial coordinates x, is considered. As
the figure shows, M, and J, are translational and rotational
inertia of the i-th attached mass, respectively. The transverse
displacement and transverse force per unit length are
respectively denoted by y(x,?) and g(x,). The beam parameters
are a cross-sectional area, cross-sectional moment of inertia
about the neutral axis, mass density, and elastic modulus of
material which are represented by 4, 7, p and E, respectively.
The translational inertia of the any attached mass can be
assumed as a function of the spatial coordinates x as follows:

m, (x):n?[[u(x -x,)-u(x —x,.—dx)], €))

where u(x — x) is the well-known unit step (Heaviside)
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Fig. 1. The Bernoulli-Euler beam with multiple concentrated
masses and rotary inertia.

function and

m, = M, 2)
Podx

By considering the attached masses as point elements,
differential length dx should be led to zero, thus

i, (%)

M,
:i{lrj})g u(x —x,)—u(x —xl.—dx)] (3)
=M, 5(x —x,),

and in a similar manner, the rotational inertia of the any
attached mass can be expressed as

limJ—i u(x —xl.)—u (x -X, —dx)]

dx -0 dfx

=J,6(x —x,).

“

Figure 2 displays the free body diagram for a beam element
regarding the Bernoulli-Euler beam theory [19], where V(x,{)
and M(x,?) represent the shearing force and bending moment,
respectively. The force and moment equations of motion for
the free vibration analysis of the beam can be written as [20]

14 —(V +6_dej
0.

X (5)
:[pAdx +M,5(x —x.)dx]azy
' ’ ot’
M +6ﬁdx -M —(V +8—de )di
Ox Ox 2
3 (6)
—Vdi=J,.§(x —xl.)dx 82y .
2 Ot “0Ox

Neglecting the terms involving second powers in dx, Egs. (5)
and (6) can be simplified as

azy B
ot?

oV
§+['OA +M,5(x —x[.):| (7)
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Fig. 2. The element of Bernoulli-Euler beam.
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Inserting Eq. (8) into Eq. (7), leads to
2 4 3
aA/z[_Ji S(x -x,) 62y2+5,(x_xi) azy
Ox Ot “Ox Ot “Ox ©)

2

0’y

"

+[pA +M,5(x —x, )}

The above equation must be satisfied over 0 < x < L domain.
Also, with respect to the spatial coordinates, the derivative is
denoted by the prime. The relationship between the bending
moment and deformation in the Bernoulli-Euler beam theory
is given as [20]

0%y (x,t)

M (1) = Bl =5

(10)

Inserting Eq. (10) into Eq. (9), the differential equation of
motion can be obtained as

0! y 0? y
EI +| pA+M . 5(x —x,
ax 4 |:p i ( i ):I 6t 2
11)
o y o y (
~J|8(x —x. ) —=—+6"(x —x, =0.

! ( ')8t26x2 ( l)atzax
Non-dimensional spatial coordinate and transverse
displacement can be introduced as

X y

== w ==

¢ 7 7 (12)

and the transverse displacement functions can be considered
as

w(g.t)=¢($)e™™, (13)
where ® is the natural circular frequency. Hence, by
introducing non-dimensional following terms:

M. J.
a; = : B = : 3 :aiciz
PAL PAL

(14)
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the dynamic equation for transverse vibration can be written
as in the following:

O(S)  ai
84/4 ﬂ’¢(§)_

a,6(£-¢,)¢(S) (15)
A4 _\O8&) o 08(S)

AR C v S Cl ey

It should be noted that in deriving the last equation, the
following property of Dirac’s delta function has been utilized
[21,22]

oL(¢-¢)]=7o(c-4).

I3 (16)

and in Eq. (14), r#=\J,/M is the radius of gyration of i-th
point mass.

Introducing the function 4({) as the collection of all the terms
with Dirac’s deltas and their derivatives as

4(¢)=
i a,6($~¢)8(<) (17)
Lot 2L 2],

the non-dimensional differential equation takes the following
form:

0'¢(<)
o

The governing differential equation given by Eq. (18) for
specified boundary conditions, leads to the evaluation of the
mode shapes and the corresponding frequencies. In order to
solve Eq. (18), it can be observed that the solution of @({)
must be in the same form with the eigen-mode of the bare
beam. Therefore, a solution for the overall beam is assumed
as a combination of the standard trigonometric and hyperbolic
functions in which the coefficients of the combination are
the generalized functions according to the following general
form:

~2'9(¢) =4 (<), (18)

$(¢)=d,(¢)sin(AS)+d, (&) cos(AS)
+d(¢)sinh(A¢)+d, (¢ )cosh(AS).

The functions d ({), d,({), d () and d ({) appearing in Eq. (19),
are unknown generalized functions determined according to
the procedure outlined in Appendix A. The expressions of
d ({)-d ({) depend on four integration constants c,, ¢,, ¢, and
c, and are defined as

(19)
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dl(é/):

A& ||« cos /14’ i

E;{ —p, Asin( ﬁé’ )_ ulg=¢ )}+cl
dz (é/):

23 ([ e sin(A¢,)4(<, |

E;{Lﬂ Acos(A<)¢'(<)) ulg=¢ )}+c2
4.(¢)- ' -
A ([e cosh(A8,)p(S) ]
_EZ{{+ﬂ Asinh (A<, )¢' (<, )_ u(¢=¢ )}+CS
d, (é’):

YR s1nh A{ |

EZ{L,B icosh /1§ )_ (4_4 )}+C4

where ¢, ¢,, ¢, ¢, are the integration constants. Meanwhile,

2 72 73 74

inserting Eq. (20) into Eq.(19), @({) can be expressed as

[, cos(A¢,)4(&,)
_—,Biﬂsin(ié/,» )#'(& )}” (-4 )}JFCI}X

[, sin(A¢,)4(<;)
_+ﬂi/1cos(/1§',~ )¢’ (& J“ S )}+C2}X

[a, cosh(A¢,)4(<,)

@1)
2+ 2sinn (22,)6 (¢ J“ - )}}
sinh(l§)+

[, sinh (A<, )4(;)
|+ Acosh (24, )4'(S, )} - )}m}

and Eq. (21) can be simplified as

#(
ul aiT (’1{5_;}})¢(§1) B +
@{—mu{g—a})m )}”“ " )} e

where

(22)

T (£)=0.5[sinh(¢)—sin(¢)]
S(¢)= 0.5[cosh(§)—cos(§)].
C (&) =c,sin(¢)+c,cos(¢)
+¢ysinh (&) +¢, cosh(¢)

(23)
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The function @(C ) can be selected by applying the product
with Dirac’s delta as the next equation [22, 23].

)=["p(¢W(c-¢ )¢ =

ﬂ/l{alT (/1[4'1- -¢ ])¢(§) }+C(/1§j).
~p.48(2[¢, =< ])#(<)

24

i=1

By derivation of Eq. (22) with respect to the spatial variable
¢, it can be written that

#'($)=

LA |aT (e -¢1)8(S) i
/I’Z‘{MS'(%{Ca})cb'(;)]u(g 4)} *

+AC"(AE).

Also, the function @ '({)) can be selected by applying the
product with Dirac’s delta as follows:

=["9(w(s-¢ )i

alar(A[¢-¢ ])s(¢)
-B28'(A[¢, - ))#(<)
+AC'(AS;).

=1 (26)

i=1

The recurrence expressions of Egs. (24) and (26) can be given
by the following explicit form:

¢(§j ) =cl,t7j +cz77j +c3}7j +c4l?j
_ s 27
¢’(§j)=clﬁj +c,0, +¢,6; +¢,T;
where
i |laT (A ¢, — 1,
h =2 o (A4, ¢ ) +sin(2¢,)
T-pas(4[¢ -¢ ))o
i laT (Al — 7
n =4 “ ( [Q é])ﬂ; _ +cos(/1§j)
T-pas(4[¢-¢ )8
(28)
o glar(As -4 )7
7, =4 +smh(/1§ )
T-pas(2[¢ -¢ )7
i laT (A<, — 0
K, =2 “ ( [é’, gl]) l +cosh(/‘té’ ),
T \-B48 (4[¢ ¢ )7
additionally
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8 l{ar ¢, -6 )R
BAS( ,1[.; g})

}+/”Lcos(/1§j)

~.

-1 aT’ .
0. /12 —Asin( AL
' ﬂ,/lS ])5 sin(44))
(29)

)t /1[5 4]71 + Acos
AZ{ pas(ale ¢ )o } Acosh(4¢))

_ lzfz'{” (2[¢,-¢))e

) -B48'(4[¢,-¢ )7

i=l1

}msmh(ﬂgl ).

The exact solution of the eigen-mode governing Eq. (15), is
given by Eq. (22), and through Eq. (27) can be stated in the
following explicit form:

T(A¢-¢ )R
~p28 (A[¢ =<))o,

k

(30)

%

N

95
—_

Y

d\

d\
':'/

) \ -0 %r—/
N < =

_+sinh(ié’)

| &far(ale-¢ )R
ﬂ;{—ﬂfﬂs i
| +cosh(A¢)

)
~

Instead of a combination of the standard trigonometric and
hyperbolic functions, the expressions for displacement and
its derivation may be expressed in a more convenient form in
terms of four fundamental solutions as follows:

x)+cos(x)]
)+sin(x )]
)—cos(x )]zS(x)

sin (x )] =T (x)

g (x)= %[cosh(

1 sinh(x
gz(x)_z[ h( 31
g (x)= %[cosh(x

g, (x)z%[sinh(x)—
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Then g(x),7=1,...,4, are a better choice of merit functions than
standard trigonometric and hyperbolic functions since these
functions have several properties which help to implement
the boundary conditions easily. There is the following relation
between derivatives of these functions:

L, ()=8,.)
go(x)=g4(x).

Moreover, the values of them at zero point are similar to
Kronicker’s delta function as

1.4,
b (32)

d’ p=1..,4
278 =0 g (33)
Regarding  Egs. (22), (23) with the aforementioned

fundamental solutions in Eq. (31), it can be expressed that

C(x)=

1g1( )+€2g2( )

(34)
+e3g3( +e4g4 Zekgp
and also
¢ gi =el; ey, tesyy, teyk;
( ) 1 2 3 4 (35)

¢,(§i ) =ev, +e,0, +e,0, +e,T,’

the new definition of the coefficients is obtained from the
following relations:

0, =4 1

|
( Mo
1, =i§ wg.(A¢,~¢ ] +8,(4¢))
i —ﬁ,ﬂgz(i[é ‘4})91' (36)
) 5 ag: (2 -6 )7 +g:(4¢))
T \-Bre(A[¢ -¢ )
K, :ﬂjil aig4(l|:§j _gi])Ki +g4(l§j)
izl | =B Ag, (’1[4/./ _C‘J)T[
et |
=B 22 (A[¢ ¢ o (37)
}+

zi{a,g3(/1[§ ¢ )m,

42, (A<, -
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olaes(A[¢ =< )7
| -B2g. (A< ¢ ])e
& aig3(/1|:é/j_é/[:|)’(i
=g (A[¢ ¢ )

+2g,(2¢)

+1g5 (A, ).

Finally, the exact solution of the Eigen-mode in explicit form
with the use of fundamental solutions can be derived as

7. (A[¢ ¢ )u }

-B.Ag:(A[¢-¢ ),

+g1(/1§)

IR TNV (S|} )

{M&(z[: 4])9,}”(5 <,

| +2,(4¢) (38)

i ag4(z[r;—4])7,- )
-pAg,(A[¢-¢)) ,}u(g &) +

Q
w

3- Frequency Equation

In this section, frequency equation will be derived by enforcing
the standard boundary conditions, including pinned—pinned
(PP), clamped-clamped (CC), cantilever (CF), and clamped—
pinned (CP). The frequency equations will be derived from
the determinant of a matrix 2x2 for any type of boundary
conditions and will be numerically solved in order to obtain
the frequency parameters (4) and corresponding vibration

modes (4(()).
3- 1- Pinned-Pinned

The boundary conditions of the pinned-pinned beam can be
expressed as follows:

$(0)=0, ¢"(0)=0, $(1)=0, ¢"(1)=0.  (39)

Accounting for Egs. (38), (39), the following conditions for
the integration constants e, e,, e,, e,, can be indicated as

e =e,=0 (40)

e el @
A4, Ay )le, o)’

where
y aig4(/lgi)771
A, =1 A
: ;{_ﬂiﬂ’g3(igi)et} g2( )
J a1g4(ﬂ’gi)’(i
A, =1 A
I N X0 .
Y |en g, (A ),
A, =2 A
g ;{—Mgl(ﬂa)a} &)
ul aigZ(igt)Kt
A, =4 A),
2 ;{_ﬁﬂl&(lﬁ)ﬂ}_‘_gz( )

The frequelncy equation of the pinned-pinned beam carrying
multiple concentrated masses with a rotary inertia can be
obtained by evaluating the second-order determinant of the
system of Eq. (41) as

A11A22 _A12A21 =0 (43)

The zeros of the Eq. (43) indicate the values of the frequency
parameters. By inserting the obtained frequency parameters
in the boundary conditions system of Eq. (41), the value of
the integration constants that provides the vibration mode can
be obtained as the follows:

12

(44)

11

Inserting the last relations into Eq. (38), the values of the
integration constants given by Egs. (40), and (44), the closed-
form expressions of the vibration modes can be obtained as

4 (€)=
Zk i:{ot.g4 A€

1

gi)Ti}+g4(2‘k)

-BAg, (/1/:51‘ )Q‘}"‘gz (}“k)

(45)
{ {a g (A 8-, } (g_gi)+g2(/1k§)}

Ale-¢))e
N{a-&( [4“‘4'])’(" }u(g—a)+g4(ﬂk§)-

2 B g, (A [c-¢ )

Kz _ﬁiﬁ’kg3(/1k

Mz

Z9 (a8, (4e ),

3- 2- Clamped-Clamped
The boundary conditions of the clamped-clamped beam can
be expressed as follows:

$(0)=0, #(0)=0, ¢(1)=0, #(1)=0. (6)
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Accounting for Egs. (38), (46), the following conditions for
the integration constants e, e, e, e, can be indicated as

€y €, e,
e =e, = (47)
A, A, )|e; 3 0
[Azl Azz]{@}_{o}’ (%)
where
4, :ﬂi{a g4 ﬂg 7/, }

o1 —ﬂlg3 /15 a
4, :ﬂi{a .g4(A¢) }

i ﬂxlg3 ie

P —ﬂxlgz /18 )o,

The frequency equation of the clamped-clamped beam
carrying multiple concentrated masses with a rotary inertia
can be obtained by evaluating the second-order determinant
of the system of Eq. (48) and in a similar manner, the closed-
form expressions of the vibration modes can be achieved as
in the following:

¢ ()=
;“k;{ K ﬂ/?“kgs( ) i}+g4(’1k)
/,Lki{agzl IB/,l’kg3( ) i}"‘gs(/lk)

i =1

5| -S4 g, (]’k [é/_gi ])O'f

8. (2[5 -6 ])x,
kz{ ﬂﬂ'kg3( k[é/_;i])ff

X[ﬂ'k i{ai(%(ﬂk [é/_gi])Vi ] (50)

}u (g_gf)+g3 (ﬂkg)

}u(é,_é/i)+g4(ﬂ‘ké’)'

3- 3- Clamped-Free
The boundary conditions of the clamped-free beam can be
expressed as

$(0)=0, ¢'(0)=0, ¢"(1)=0, ¢"()=0. (1)

Accounting for Egs. (38), (51), the following conditions for

the integration constants e,e,e,e,are written as

e =e,=0 (52)

A4, A, e _ 0
A, Ay ) e, o) (53)

in which

4, :ﬁi{a .8, (A&7, }
o ,b’/lg] /15 o*
4, :li{a .2, (Ae) }
i | —B g ( /15
A21=ﬂi{a & )7 } -
= |-BAg.(Ae, )0,
Nl g, (s
4, = l;{—ﬂiﬂ(& (/7)@ - }+g1 (1)

The frequency equation of the clamped-free beam carrying
multiple concentrated masses with a rotary inertia can be
represented by evaluating the second-order determinant of the
system of Eq. (53) and similarly, the closed-form expressions
of the vibration modes is given by

¢ (¢)=
}“kZ{agz K _ﬁiﬂ’kgl(ﬂ’k

1

g, )Ti}+g2(/1k)
g, )O'l.}-i—g, (&)

Mz

/‘Lk agz /15) i_ﬂi]’kgl(ﬂ’k

N{a& J¢-¢ )
B g (A4 [S-¢ )0,

g% [¢-¢])x,
kz{ B g (4 [E-¢))

(35)
} (C—é”i)+g3(/1ké)]

} (g_gi)+g4 (iké,)'

3- 4- Clamped-Pinned
The boundary conditions of the clamped-pinned beam can be
considered as

$(0)=0, ¢'(0)=0, 4(1)=0, ¢'(1)=0. (56)

Accounting for Egs. (38) and (56), the following conditions
for the integration constants e, e, e, e, are expressed as

e, =e,=0 (57)
A4, A, ) )e 0
4, Ay ) e, B 0J’ (58)
in which
B Y a'g4(/18‘)7/i
A _l;{ -B.Ag, (e, )o, }+g3(/1)
v (e, g, (e )k, }
A, =2 +g,(A (59)
IZI:{ ﬂlg3(ﬂ,g) ¢ ( )
& e (4e)7,
A _l,z{ -B.Ag,(A¢; )0, }+g1(l)
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Ay = li{algz (lgi )Ki }"'gz (l)

=1 _ﬂi ﬂ’gl (ﬂ’gi )Ti

The frequency equation of the clamped-pinned beam carrying
multiple concentrated mass with a rotary inertia is obtained
by evaluating the second-order determinant of the system of
Eq. (58) and in a similar manner, the closed-form expressions
of the vibration modes is represented as

& (é’) =

i{a &4 ﬂkg‘) ﬂ/lkgs(/lkgl) }+g4(ﬂ“k)

i

/lk

Mz

ag4 ﬂ ‘9) i_ﬁiﬂ’kg3(ﬂ’kgi)o-i}+g3(ik)

{ {a EAvAISTA|2 } (§—§i)+g3(ﬂk§)} (60)

g (A4 [E-¢]))o

2 i{%&t (/’tk [§—§[ ])KI

-BAg (4 [¢-¢ ) }M(C—CI- )+ 2, (4 <)

4- Numerical Results and Discussion

In order to validate the results of the presented technique,
indicated in Tables 1 to 7, initially, the first five frequency
parameters of a beam with two or four attached masses are
calculated and listed for various cases in position and value
of the mass and inertia parameters (a & c). It can be observed
that the proposed technique is in a very good agreement with
other exact solutions, are given by [15].

The maximum error presented at the bottom of Tables 1 to
7 is less than 1 % which confirms a high accuracy of the
proposed solution. It is worth mentioning that this small
difference may be created through the diversity of employed
numerical methods and divergence benchmark in the solution
of the final algebraic equation, presented in Ref. [15].

In addition, it can be concluded that as the value of the mass
and inertia parameters increase, the value of all frequency
parameters decreases. Of course, it is well worth mentioning
that the reduction of the frequency parameters due to the rotary
inertia parameter is lower than the reduction concerning with
the mass parameter; rather as will be shown in the following
it depends on the position of the mass.

Table 1. First five frequency parameters for a clamped—clamped beam with two symmetric masses.

¢,=c¢,=0 ¢,=¢,=0.01 ¢, =¢,=0.05 ¢,=¢,=0.1

£=025;¢,=0.75

Ref [15] Present  Ref [15]

Present  Ref [15] Present Ref[15] Present

4.7125 4.7112 4.7112 4.7071 4.7071
7.7731 7.7723 7.7723 7.7696 7.7696
10.8956  10.8899  10.8898  10.8714  10.8714
14.1124  14.0520  14.0518  13.8602  13.8601
17.2515  17.1426  17.1413 16.7908  16.7890

4.5663 4.5554 4.5554 4.5217 4.5217
7.1908 7.1855 7.1855 7.1671 7.1671
10.2325  10.1796  10.1796 9.9795 9.9795
13.9471 13.3525  13.3525 11.7542 11.7543
17.0724 159720 159720  13.5895  13.5895

4.0961 4.0663 4.0663 3.9755 3.9755
5.8980 5.8893 5.8893 5.8555 5.8555
9.1356 8.8716 8.8716 7.9804 7.9804
13.6400  11.2437  11.2437 8.5500 8.5500
16.6903  12.9941 12.9940  10.8372  10.8372

3.7320 3.6959 3.6959 3.5868 3.5868
5.1743 5.1656 5.1656 5.1306 5.1306
8.7220 8.1800 8.1800 6.9010 6.9010
13.4564 9.8682 9.8682 7.2687 7.2687
16.4461 11.6278  11.6279  10.2256  10.2256

A, 47126 47126 47125
2 77732 77732 17731
a,=a,=0.01 A 10.8958  10.8958  10.8956
3 141150 141148 14.1125

A 172557 17.2543  17.2513

A, 45668 45668  4.5663

2 71911 71910 7.1908

a,=a,=0.1 A 102346 10.2346  10.2325
2, 139713 139712 13.9472

A 17.1148 171172 17.0715

A, 40973 40973 4.0961

2, 5.8984  5.8984  5.8980

a,=0,=0.5 A 9.1453  9.1453  9.1356
b3 13.7527 137528 13.6401

A 169258  16.8841 167178

A, 37335 37335 3.7320

A, 51746 51746 5.1743

a,=a,~1 A 87418 87418 87220
A 13.6791  13.6784  13.4578
A 16.8681  16.9985  16.4514

A, 33053 3.3053 33037

2 44574 44574 44571

a,=0,=2 A 84667 84667  8.4261
p 13.6312  13.6297  13.1901

EN

~

o

16.8320  16.7198 15.9869

3.3037 3.2659 3.2659 3.1514 3.1514
4.4571 4.4491 4.4491 4.4160 4.4160
8.4261 7.3841 7.3841 5.8827 5.8827
13.1898 8.4819 8.4819 6.1460 6.1460
159472 10.6332 10.6332 9.8684 9.8684

Maximum error=0.7671 %
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A beam with one, three or five similar attached masses is be observed from these tables that, as expected, whatever
assumed. The first five frequency parameters of the beam quantity of masses increases, the value of the frequency
for one single attached mass, for three masses, and for parameters decreases for all boundary conditions.

five masses are respectively listed in Tables 8 to10. It can

Table 2. First five frequency parameters for a clamped—clamped beam with two asymmetric masses.

¢,=¢c,=0 ¢, =¢,=0.01 ¢,=¢,=0.05 ¢,=¢,=0.1

¢,=025;¢,=05
Ref [15] Present  Ref[15] Present Ref[15] Present Ref[15] Present

A, 4.6921 4.6921 4.6921 4.6921 4.6915 4.6915 4.6895 4.6895

2 7.8128 7.8128 7.8125 7.8125 7.8061 7.8061 7.7861 7.7861

a,=a,=0.01 A 10.8932  10.8932  10.8931 10.8931 10.8903  10.8903 10.8810  10.8810
A, 14.1262  14.1261 141236 14.1236  14.0593  14.0591 13.8577  13.8575

s 17.1859  17.1856  17.1836  17.1836  17.1287  17.1292  16.9486  16.9476

A, 4.4053 4.4053 4.4051 4.4051 4.4003 4.4003 4.3856 4.3856

2 7.4860 7.4860 7.4841 7.4841 7.4361 7.4361 7.2818 7.2818

a,=a,=0.1 A 10.2227  10.2227 102217 102217  10.1940  10.1940  10.0654  10.0654
2y 14.0604  14.0602  14.0336  14.0335  13.3904  13.3904  11.9149 11.9149

s 16.6703  16.6707  16.6471 16.6455  16.0376  16.0359  13.7828  13.7828

A, 3.7027 3.7027 3.7022 3.7022 3.6922 3.6922 3.6606 3.6606

2, 6.4814 6.4814 6.4778 6.4778 6.3855 6.3855 6.0575 6.0575

a,=a,=0.5 2 9.2683 9.2683 9.2606 9.2606 9.0218 9.0218 8.0269 8.0269
2 13.9693  13.9694  13.8313 13.8315 11.3901 11.3901 9.4410 9.4410

s 16.0876  16.0812 159755 159827 129703 129703  10.2982  10.2982

A, 3.2772 3.2772 3.2768 3.2768 3.2658 3.2658 3.2314 3.2314

3 5.7693 5.7693 5.7658 5.7658 5.6755 5.6755 5.3312 53312

a,=a,=1 2 9.0003 9.0003 8.9827 8.9827 8.3750 8.3750 6.9111 6.9111
2, 13.9388  13.9387  13.6573 13.6559  10.2652  10.2652 8.0475 8.0475

s 15.9243 159157  15.7069  15.7013 11.3195 11.3195 9.8784 9.8784

4, 2.8399 2.8399 2.8394 2.8394 2.8287 2.8287 2.7949 2.7949

2 5.0077 5.0077 5.0046 5.0046 4.9240 4.9240 4.5992 4.5992

a,=a,=2 A 8.8463 8.8463 8.8084 8.8084 7.5086 7.5086 5.8790 5.8790
A 13.9185 139198  13.3490  13.3480 9.0757 9.0757 6.8012 6.8012

EN

NS

o

15.8239  15.8957 15.3957 153982  10.2276  10.2276 9.6737 9.6737

Maximum error=0.4517 %

Table 3. First five frequency parameters for a pinned-pinned beam with two symmetric masses.

c,=c,=0 c,=c,=0.01 c,=c,=0.05 ¢c,=c,=0.1

¢,=0.25;¢,=0.75
Ref [15] Present Ref [15] Present Ref [15] Present Ref [15] Present

12.5664  12.5664  12.5465  12.5466  12.0741 12.0741 10.8225  10.8225
15.1713  15.1714  15.1541 15.1537  14.6979  14.6978  13.3007  13.3007

N

A, 3.1261 3.1261 3.1261 3.1261 3.1257 3.1257 3.1246 3.1246
2, 6.2218 6.2218 6.2218 6.2218 6.2218 6.2218 6.2218 6.2218
a,=a,=0.01 2 9.3790 9.3790 9.3786 9.3786 9.3687 9.3687 9.3376 9.3376
2y 12.5664  12.5664  12.5644  12.5644 125167  12.5167 123679  12.3679
s 15.6328  15.6329  15.6309  15.6309  15.5845  15.5847  15.4321 15.4320
, 3.0013 3.0013 3.0012 3.0012 2.9983 2.9983 2.9892 2.9892
2 5.7745 5.7745 5.7745 5.7745 5.7745 5.7745 5.7745 5.7745
a,=a,=0.1 2 9.0595 9.0595 9.0559 9.0559 8.9674 8.9674 8.6820 8.6820
A
A

o
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2, 2.6393 2.6393 2.6390 2.6390 2.6315 2.6315 2.6085 2.6085
4, 4.7664 4.7664 4.7664 4.7664 4.7664 4.7664 4.7664 4.7664
a,=a,=0.5 A 8.4744 8.4744 8.4594 8.4594 8.0892 8.0892 7.1123 7.1123
2, 12.5664  12.5664  12.4671 12.4670  10.4963 10.4963 8.0784 8.0784
s 14.5617  14.5598  14.4846  14.4825  12.5720  12.5720  10.8300  10.8300
2, 2.3832 2.3832 2.3828 2.3828 2.3740 2.3740 2.3469 2.3469
4, 4.1920 4.1920 4.1920 4.1920 4.1920 4.1920 4.1920 4.1920
a,=a,=1 2 8.2394 8.2394 8.2114 8.2114 7.5328 7.5328 6.2114 6.2114
A, 12.5664  12.5668  12.3679  12.3679 9.3276 9.3276 6.8955 6.8955
Ay 14.3802  14.3801 14.2279  14.2273 11.4423 11.4423 10.2253  10.2253
2, 2.0960 2.0960 2.0956 2.0956 2.0864 2.0864 2.0583 2.0583
2, 3.6171 3.6171 3.6171 3.6171 3.6171 3.6171 3.6171 3.6171
a,=a,=2 2 8.0730 8.0730 8.0190 8.0190 6.8399 6.8399 5.3282 5.3282
A, 12.5664  12.5663 12.1712  12.1713 8.0784 8.0784 5.8419 5.8419
A 14.2680  14.2668  13.9592  13.9499  10.5691 10.5691 9.8684 9.8684

o

Maximum error=0.0667 %

Table 4. First five frequency parameters for a pinned-pinned beam with two asymmetric masses.

cl=cz=0 cl=c2=0.01 cl=cz=0.05 c1=cz=0.1

¢,=0.25;¢,=0.50
Ref [15] Present Ref [15] Present Ref [15] Present Ref [15] Present

3.1185 3.1185 3.1184 3.1184 3.1183 3.1183 3.1177 3.1177
6.2524 6.2524 6.2523 6.2523 6.2494 6.2494 6.2403 6.2403
9.3558 9.3558 9.3556 9.3556 9.3509 9.3509 9.3356 9.3356
12.5664  12.5664  12.5644  12.5644 125168  12.5168  12.3684  12.3684
15.5961 15.5960  15.5951 15.5960  15.5714  15.5705  15.4950  15.4953

a1:a2:0.01

2.9415 2.9415 2.9414 2.9414 2.9401 2.9401 2.9359 2.9359
6.0161 6.0161 6.0151 6.0151 5.9914 5.9914 59175 59175
8.8650 8.8650 8.8637 8.8637 8.8302 8.8302 8.6981 8.6981
12.5664  12.5663 12.5465  12.5465  12.0735  12.0735  10.8986  10.8986
14.9527  14.9521 14.9422  14.9421 14.6718  14.6717  13.4418  13.4418

a]:aZZO.l

2.4946 2.4946 2.4945 2.4945 2.4916 2.4916 2.4824 2.4824
5.3428 5.3428 5.3403 5.3403 5.2788 5.2788 5.0881 5.0881

12.5664  12.5663 12.4664  12.4663  10.5152  10.5152 8.8187 8.8187
14.2171 14.2176  14.1610  14.1605  12.4431 12.4432 9.6262 9.6262

2.2162 2.2162 2.2161 2.2161 2.2128 2.2128 2.2027 2.2027
4.8384 4.8384 4.8355 4.8355 4.7649 4.7649 4.5445 4.5445
7.6317 7.6317 7.6240 7.6240 7.3718 7.3718 6.3101 6.3101
12.5664  12.5663 12.3649  12.3650 9.4562 9.4562 7.9257 7.9257
14.0212  14.0208  13.9073 13.9072  10.8964  10.8964 8.5582 8.5582

1.9256 1.9256 1.9254 1.9254 1.9222 1.9222 1.9121 1.9121
4.2553 4.2553 4.2525 4.2525 4.1825 4.1825 3.9609 3.9609
7.4180 7.4180 7.4019 7.4019 6.8212 6.8212 5.4070 5.4070
12.5664  12.5655 12.1594  12.1594 8.4533 8.4533 6.7602 6.7602
A 13.9050  13.9096  13.6744  13.6782 9.4571 9.4571 8.1863 8.1863

S

j'1
12
/13
'14
2'5
il
/12
/13
’14
/15
}'1
/12
a,=a,=0.5 2 7.9643 7.9643 7.9604 7.9604 7.8441 7.8441 7.2183 7.2183

}“4
/15
j'1
ju2
/13
'14
2'5
il
/12
o,=a,=2 2
’14

Maximum error=0.0331 %
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Table 5. First five frequency parameters for a cantilever beam with two symmetric masses.

£ =025;¢=0.75 c,=c¢,=0 c,=c,=0.01 c,=c,=0.05 ¢,=c,=0.1
1 * "5y .

Ref [15] Present Ref [15] Present Ref[15] Present Ref [15] Present

4, 1.8669 1.8669 1.8669 1.8669 1.8668 1.8668 1.8665 1.8665

2, 4.6851 4.6851 4.6850 4.6850 4.6827 4.6827 4.6757 4.6757

a,=a,=0.01 A 7.7887 7.7887 7.7887 7.7887 7.7869 7.7869 7.7813 7.7813
2, 10.9048  10.9047 109046 109046  10.8999  10.8999  10.8850  10.8850

s 14.1171 14.1170  14.1147 14.1145 14.0569  14.0566  13.8735  13.8733

4, 1.8003 1.8003 1.8002 1.8002 1.7994 1.7994 1.7967 1.7967

2 4.6083 4.6083 4.6074 4.6074 4.5867 4.5867 4.5240 4.5240

a,=a,=0.1 2 7.3191 7.3191 7.3184 7.3184 7.3026 7.3026 7.2516 7.2516
2, 103067 103067  10.3050  10.3050  10.2639  10.2639  10.1052  10.1052

s 13.9865 139863  13.9634  13.9634  13.3953  13.3952  11.8800  11.8800

A, 1.6000 1.6000 1.5999 1.5999 1.5976 1.5976 1.5903 1.5903

2 4.3191 4.3191 4.3162 43162 4.2466 4.2466 4.0495 4.0495

a,=a,=0.5 2 6.3836 6.3836 6.3800 6.3800 6.2961 6.2961 6.0715 6.0715
4, 9.3381 9.3381 9.3312 9.3312 9.1379 9.1379 8.2312 8.2312

s 13.7841 13.7837  13.6761 13.6755 11.4015 11.4015 9.2243 9.2243

A, 1.4529 1.4529 1.4528 1.4528 1.4499 1.4499 1.4411 1.4411

2 4.0343 4.0343 4.0305 4.0305 3.9408 3.9408 3.6874 3.6874

a,=a,=1 A 5.9799 5.9799 5.9712 5.9712 5.7797 5.7797 5.3853 5.3853
2y 8.9843 8.9843 8.9709 8.9709 8.5646 8.5646 7.0960 7.0960

s 13.7146  13.7137  13.5026  13.5016  10.1527  10.1527 8.5116 8.5116

4, 1.2838 1.2838 1.2837 1.2837 1.2806 1.2806 1.2712 1.2712

2, 3.6358 3.6358 3.6319 3.6319 3.5381 3.5381 3.2631 3.2631

a,=0,=2 2 5.7009 5.7009 5.6803 5.6803 5.2724 5.2724 4.6783 4.6783
A 8.7435 8.7435 8.7169 8.7168 7.8393 7.8393 6.0303 6.0303

N

NS

fn

13.6691 13.6659  13.2466  13.2465 9.0712 9.0712 8.0572 8.0572

Maximum error=0.0234 %

Table 6. First five frequency parameters for a cantilever beam with two asymmetric masses.

£ =025;¢ =050 c,=c¢,=0 c,=c,=0.01 c,=c,=0.05 ¢,=c,=0.1
1 * L)) .

Ref [15] Present Ref [15] Present Ref [15] Present Ref [15] Present

4, 1.8728 1.8728 1.8728 1.8728 1.8727 1.8727 1.8724 1.8724
2 4.6627 4.6627 4.6626 4.6626 4.6620 4.6620 4.6602 4.6602
a,=a,=0.01 A 7.8141 7.8141 7.8138 7.8138 7.8078 7.8078 7.7888 7.7888
2 10.8925  10.8925  10.8924  10.8924  10.8896  10.8896  10.8803 10.8803
s 14.1262  14.1261 14.1235  14.1236  14.0592  14.0591 13.8573 13.8574
A, 1.8523 1.8523 1.8522 1.8522 1.8514 1.8514 1.8490 1.8490
2, 4.4279 4.4279 4.4277 4.4277 4.4232 4.4232 4.4090 4.4090
a,=a,=0.1 2 7.4885 7.4885 7.4866 7.4866 7.4417 7.4417 7.2971 7.2971
2y 10.2160  10.2159  10.2149  10.2149  10.1879  10.1879  10.0621 10.0621
A 14.0603  14.0602  14.0335  14.0336  13.3891 13.3890  11.9090  11.9090

o
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2, 1.7711 1.7711 1.7709 1.7709 1.7677 1.7677 1.7579 1.7579
4, 3.8880 3.8880 3.8875 3.8875 3.8759 3.8759 3.8384 3.8384
a,=a,=0.5 A 6.5059 6.5059 6.5026 6.5026 6.4207 6.4207 6.1329 6.1329
2, 9.2404 9.2404 9.2331 9.2331 9.0069 9.0069 8.0333 8.0333
s 13.9690  13.9684  13.8307  13.8299  11.3806 11.3806 9.4421 9.4421
2, 1.6881 1.6881 1.6879 1.6879 1.6828 1.6828 1.6676 1.6676
4, 3.5984 3.5984 3.5977 3.5977 3.5809 3.5809 3.5261 3.5261
a,=a,=1 2 5.8179 5.8179 5.8151 5.8151 5.7418 5.7418 5.4687 5.4687
A, 8.9619 8.9619 8.9453 8.9453 8.3707 8.3707 6.9231 6.9231
Ay 13.9383  13.9371 13.6562  13.6545 10.2484  10.2484 8.0525 8.0525
2, 1.5636 1.5636 1.5633 1.5633 1.5565 1.5565 1.5363 1.5363
2, 3.3385 3.3385 3.3374 3.3374 3.3101 3.3101 3.2221 3.2221
a,=a,=2 2 5.0967 5.0967 5.0946 5.0946 5.0421 5.0421 4.8403 4.8403
A 8.8007 8.8007 8.7651 8.7651 7.5268 7.5268 5.9004 5.9004

N

~

o

139179 139117  13.3470  13.3476 9.0692 9.0692 6.8091 6.8091

Maximum error=0.0446 %

Table 7. First five frequency parameters for a clamped—clamped beam with four symmetric masses.

£,=0.125;¢,=0.375 c,=c,=0 c,=c,=0.01 c,=c,=0.05 c,=c,=0.1
(;=0.625;(,=0.875  Ref[15] Present Ref[15] Present Ref[15] Present Ref[15] Present
2 46840  4.6840  4.6840  4.6840  4.6826  4.6826  4.6782  4.6782
A, 77796 77796  7.7792 77792 77697  7.7697  7.7399  7.7399
a,=0,=0.01 A 109328 109328 109310  10.9310  10.8880  10.8879  10.7556  10.7556
by 13.8857  13.8858  13.8851  13.8849  13.8706  13.8705  13.8239  13.8238
A 17.0445  17.0431  17.0409  17.0398  16.9556  16.9560  16.6877  16.6898
2 43491 43491 43487 43487 43392 43392 43099  4.3099
2, 72352 72352 72325 72325 71689  7.1689 69764  6.9764
a,=a,=0.1 A 10.3944 103944  10.3819 103818  10.0848  10.0847 92616  9.2616
2, 123091  12.3089 123056  12.3056 122171 122171  11.8915  11.8914
A 15.7406  15.7385  15.7063 157050  14.9448  14.9462  13.3483  13.3483
A 3.5945  3.5945 35937  3.5937  3.5757  3.5757 35210 3.5210
2, 59801 59801 59753 59753 58617 58617  5.5285  5.5285
@,=a,=0.5 2, 87765  8.7765  8.7569  8.7569 82499 82499 69649  6.9649
by 9.6195  9.6195  9.6142  9.6142 94698  9.4698 89339  8.9339
A 143751 143785  14.1862  14.1859  11.5622  11.5622  9.5382  9.5382
2 31633 3.1633  3.1625  3.1625  3.1435  3.1435  3.0865  3.0865
A, 52591 52591 52542 52542 51380  5.1380  4.7995  4.7995
a,=a,~1 A 77375 77375 77194 77194 72232 72232 59649  5.9649
by 83269 83269 83217 83217 81776  8.1776  7.6522  7.6522
A 14.0575  14.0228  13.6736  13.6799  9.9683  9.9683  8.0941  8.0941
2 27309 27309 27301 27301 27119 27119 2.6577  2.6577
2, 45370 45370 45325 45325 44235 44235 41072 4.1072
a,=0,=2 A 6.6774  6.6774  6.6616  6.6616 62123 62123  5.0638  5.0638
) 7.1145  7.1145  7.1097  7.1097 69766  6.9766  6.4975  6.4975

N

N

fon

13.8827  13.8724  13.1317  13.0827 8.4936 8.4936 6.8383 6.8383

Maximum error=0.3745 %
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Table 8. First five frequency parameters of a beam with a single mass for different values of mass and rotary inertia and various
boundary conditions.

¢, = 0.05 a=0.1
€=03 a=0.01 a=0.1 a=1 c=0 c=0.01 c=0.1
A, 3.1261 3.0013 2.3832 3.0013 3.0013 3.0013
A 6.2801 6.2522 5.9773 6.2832 6.2819 6.1592
Pinned-Pinned (PP) A 9.3790 9.0595 8.2394 9.0595 9.0595 9.0595
A, 12.5414 12.3043 10.2964 12.5664 12.5564 11.4751
A 15.6329 15.1708 26.7079 15.1708 15.1710 15.1714
A, 4.7007 4.4698 3.4378 4.4698 4.4698 4.4698
A 7.8468 7.7888 72123 7.8532 7.8506 7.5927
Clamped-Clamped (CC) A 10.9430 10.5888 9.7855 10.5888 10.5888 10.5888
b3 14.1016 13.7546 11.2575 14.1371 14.1230 12.5819
A, 17.1960 16.7049 25.309 16.7049 16.7048 25.1510
A, 1.8729 1.8534 1.6966 1.8540 1.8540 1.8516
A 4.6705 4.4886 3.7652 4.4889 4.4888 4.4876
Clamped-Free (CF) , 7.8487 7.7936 7.2490 7.8545 7.8521 7.6085
A, 10.9423 10.5830 9.7611 10.5830 10.5830 10.5830
A, 14.1014 13.7536 11.2449 14.1369 14.1229 12.5770
A, 3.9063 3.7433 2.9481 3.7437 3.7437 3.7419
A 7.0590 6.9817 6.5143 7.0203 7.0188 6.8638
Clamped- Pinned (CP) A 10.1663 9.8616 8.9826 9.8806 9.8799 9.7927
A, 13.3167 13.0119 10.9130 13.2796 13.2697 12.1355
bl 16.4169 15.9233 14.5701 16.0175 16.0158 15.4584

fn

Table 9. First five frequency parameters of a beam with three similar masses for different values of mass and rotary inertia and
various boundary conditions.

¢, =0.05 a=0.1
$=10.30.50.7]

a=10.01 a=0.1 a=1 c=0 c=0.01 c=0.1
4, 3.1061 2.8554 2.0371 2.8570 2.8570 2.8503
2, 6.2240 5.7877 42114 5.8127 5.8117 5.7142
Pinned-Pinned (PP) A 9.3511 8.7860 6.4884 8.9184 8.9131 8.4087
Y 12.4689 11.7865 8.9510 12.2595 12.2415 10.4809
A 15.4841 14.1476 10.4922 14.1868 14.1856 13.9119
A, 4.6724 42723 3.0185 4.2793 4.2790 4.2514
A, 7.7604 7.1074 5.0243 7.1476 7.1460 6.9858
Clamped-Clamped (CC) A 10.8790 10.0126 7.0599 10.1487 10.1434 9.5924
2, 14.0256 13.1478 9.4023 14.0479 14.0117 11.2212
A 17.0374 15.5790 10.8397 15.8865 15.8795 14.3061
A, 1.8660 1.7923 1.4240 1.7937 1.7937 1.7881
2, 4.6520 4.3642 3.4349 4.3782 4.3776 4.3230
Clamped-Free (CF) A 7.7723 7.1997 5.5048 7.2389 7.2374 7.0793
A, 10.8831 10.0519 7.3333 10.1763 10.1714 9.6686
A 14.0260 13.1575 9.4998 14.0411 14.0056 11.2667

[
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Clamped- Pinned (CP)

EN w N

PN

fn

3.8815
6.9946
10.1152
13.2378
16.2688

3.5640
6.4607
9.4070
12.4131
14.8898

2.5368
4.6390
6.7914
9.1712
10.6770

3.5676
6.4947
9.5467
12.9320
15.2756

3.5675
6.4933
9.5412
12.9132
15.2580

3.5532
6.3597
8.9921
10.9238
14.0919

Table 10. First five frequency parameters of a beam with five similar masses for different values of mass and rotary inertia and
various boundary conditions.

¢, =0.05 a=0.1
¢=10.10.30.50.7 0.9]

a=0.01 a=0.1 a=1 c=0 c=0.01 c=0.1
4, 3.1026 2.8329 1.9970 2.8387 2.8385 2.8158
2 6.1997 5.6311 3.9337 5.6767 5.6749 5.5026
Pinned-Pinned (PP) 2 9.2859 8.3606 5.7543 8.5070 8.5010 7.9544
2 12.3556 10.9841 7.4042 11.2768 11.2659 10.0416
s 15.3368 13.1965 8.5992 13.1966 13.1966 13.1965
A, 4.6710 4.2631 3.0027 4.2742 4.2738 4.2306
2 7.7476 7.0295 4.8994 7.0996 7.0968 6.8305
Clamped-Clamped (CC) A 10.8329 9.7440 6.6855 9.9651 9.9562 9.1222
4, 13.9210 12.4538 8.4240 13.2043 13.1740 10.7300
s 16.8666 14.5053 9.4358 14.7316 14.7259 13.8300
A, 1.8525 1.6953 1.1998 1.6969 1.6969 1.6904
2, 4.6362 4.2354 2.9880 4.2644 4.2633 4.1533
Clamped-Free (CF) A 7.7516 7.0460 4.9251 7.1628 7.1580 6.7346
2y 10.8377 9.7727 6.7276 10.0812 10.0686 8.9762
s 13.9295 12.5091 8.5011 13.4698 13.4298 10.6298
4, 3.8777 3.5396 2.4938 3.5481 3.5477 3.5146
2, 6.9740 6.3307 44172 6.3873 6.3850 6.1708
Clamped- Pinned (CP) 2 10.0589 9.0502 6.2182 9.2268 9.2197 8.5555
2y 13.1315 11.6794 7.8582 12.0500 12.0370 10.4477
A 16.1171 13.9225 9.1077 14.2363 14.2233 13.4142

fn

In order to study the position of the mass on the frequency
parameters, a beam with a single concentrated mass (a=0.1)
and variable values of rotary inertia are employed as

0975

097

Frequency Ratio R,

E

0.955

86

¢=[0 0.05 0.1 0.2]. The first two frequency ratios vs. the
variations of the position of the mass are depicted in Figure
3 for various boundary conditions. The frequency ratio (R )
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is considered as the ratio of the frequency parameter to the
corresponding one for a bare beam. As shown in Figure 3,
when the value of rotary inertia increases, magnitudes of

frequency parameters will decrease.
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Figure 3, also shows that in each mode of any boundary
conditions, there are some points that when mass is located
on them, the reduction of frequency parameter is zero when
the rotary inertia in neglected. In other words, when mass
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Fig. 3. The first two frequency ratio for a beam with a single attached mass (¢=0.1) vs. position of the mass for variable values of
rotary inertia and various boundary conditions.
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is located at these points, all decreases in corresponding
frequency parameter is influenced by the rotary inertia
and translational inertia has no effect on the corresponding
frequency parameter. These points are nodes in the
corresponding mode, i.e. the center point for even modes
of symmetric beams. Moreover, there are some points that
when the mass is located on them, the reduction of frequency
parameters is independent of the rotary inertia. In other
words,

when the mass is located at these points, all decreases
in corresponding frequency parameter are affected by
translational inertia and rotary inertia has no effect on
the corresponding frequency parameter. These points are
antinodes of the corresponding mode, i.e. the center point for
odd modes of symmetric beams. The quantity of nodes and
antinodes increases at higher modes.

Figure 4.a, shows the first five mode shapes of the pinned-
pinned beam with three similar attached masses (a=0.1
& ¢=0.05) at positions: ¢,=0.25, {,=0.5, and {,=0.75.
Additionally, Figure 4 (b) represents the first five mode
shapes of the clamped-free one with similar attachments.
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Fig. 4. First five mode shapes of (a) pinned-pinned and (b)
cantilever beams with three similar attached masses (¢=0.1 &
¢=0.05) at positions: {, =0.25, {,=0.5, and {,=0.75.
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5- Conclusions

Vibration analysis of uniform Bernoulli-Euler beams
carrying multiple concentrated masses and considering their
rotary inertia was investigated for all standard boundary
conditions. For all boundary conditions, the fourth order
partial differential equation was transformed to a quadratic
eigenvalue problem. Some typical results calculated by the
presented model confirmed an excellent coincidence with the
presented results of the other authors. The influence of the
mass parameter, the rotary inertia parameter, quantity, and
location of mass on the frequency parameters of the beam
was studied for various boundary conditions. Based on the
results discussed earlier, several conclusions can be addressed
as follows:

(1) In general, for a beam with concentrated masses and
their rotary inertia, the value of frequency parameters are
less than corresponding ones of a bare beam. Therefore, it
can be obviously concluded that the increase in the number
of concentrated masses always causes more decrease in
frequency parameters.

(2) Generally, when the effect of attached masses on vibrating
beams is studied, only the translational inertia of the mass is
considered. In those cases, it is generally observed that the
frequency parameters decrease with respect to the values of
the mass, except for the cases in which the masses are located
at nodal points of the corresponding normal mode.

(3) When the model takes into account the rotary inertia of
the mass too, all frequency parameters decrease.

(4) The translational inertia has its highest influence over a
natural frequency when the mass is located at an antinode of
the corresponding normal mode. In this situation, the rotary
inertia has no effect.

(5) The rotary inertia has the highest influence on a natural
frequency when the mass is located at a node of the normal
mode. In this case, the translational inertia does not have any
effect.

(6) Effect of the mass and rotary inertia on the mode shapes
of a beam respectively appear as a reduction in the amplitude
and slope in the mass position.

Appendix A

This appendix presents a procedure to determine the functions
d(0), d({), d({) and d({) which appear in Eq. (19). This
equation is given here for convenience:

#($)=d,(¢)sin(AS)+d, (&) cos(AS)
+dy(&)sinh(A¢)+d, (&) cosh(AS).

Differentiation of Eq. (A.1) with respect to the (' leads to

(A-T)

#' (&) =d, () Acos(AS)—d, (&) Asin(AL)
+d,({)Acosh(AS)+d, (&) Asinh (A)+

A-2
d/(&)sin(A)+d, (£ )cos(AS) (A-2)
+d;(¢)sinh(A¢)+d (&) cosh(AS).
By imposing the following condition:
d/(&)sin(A)+d, (£ )cos(AS) + (A-3)

d;({)sinh(A¢)+d, ({)cosh(AL) =0,
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the following relation can be obtained:

¢"(&)=—d, (&) A sin(A¢) ~d, (&) A* cos(AS)
+d,({) A sinh (A¢) +d, (&) A* cosh(AS)
+d|($)Acos(AL)—d, (&) Asin(AL)+
d{(¢)Acosh(AL)+d] (&) Asinh (AS).

Furthermore, by imposing the next condition as

(A-4)

d!(¢)Acos(A¢)—d; (&) Asin(AL)

+d!(¢) Acosh(AL)+d (&) Asink (AL) =0, (A-3)

next equation can be written as follows:

¢"(¢)=—d,(£) A7 cos(A&)+d, (&) A sin(AS)
+d (&) A’ cosh(A$)+d, (£) A’ sinh (AS)
_dl'(éf)/iz sin(A¢)—d, (é’)lz cos(AL)
+d](¢) A’ sinh(A¢) +d ] (£) A cosh(AL).

(A-6)

and finally by imposing the next condition as

—d|($)A%sin(A¢)—d; (&) A% cos(AS)
+d!(£) A2 sinh (AL)+d (&) 2 cosh(2L) =0, (&7

one can write

P ({) =d, ({)14 sin(l§)+d2 (()/14 COS(/I{)
+d (&) A*sinh(A¢)+d, (&) A cosh(AC)

—d /() A cos(A¢)+d, (£) A sin(AL)

+d} ()2 cosh (AL )+d (&) Asinh (L)

Inserting Eq. (A8) in governing equation (18), leads to

(A-8)

—_~ o~

—d|($) A cos(AS)+d, (&) A sin(AS)

+d () A cosh(A&)+d;(¢)APsinh(A¢) =A4(S).
Incorporating the assumed conditions of Egs. (A.3), (A.5),
(A.7) and (A.9), the generalized functions d,’({), d,'(),

d,’({), and d,’({) can be achieved by integrating the following
system of four differential equations:

(A-9)

sin(A¢)  cos(A¢) sinh(AL) cosh(AS)

cos(l{) —sin(/u_j’) cosh(ﬂéf) sinh(/lg“)
—sin(A¢) —cos(A¢) sinh(AS) cosh(AS)
—cos(A¢)  sin(A¢) cosh(A¢) sinh(AS)

dl'(é') g (A-10)

Ja@] |
d;(¢)
ai(¢)) |22

The system of differential equation matrix, Eq. (A.10), can be

&9

written under the following uncoupled form:

~ cos(A¢)

016)=-2U 1 ¢

a:(6)= ") 4 ¢

01(0)- =20 1 ) o
4i(¢)=-00) 4 ),

Inserting A({) from Eq. (17) into Eqgs. (A.11) and integration
of the obtained equations lead to

d, (g):
23 ([, cos(2¢,)4()

_E;{_—ﬂiﬂsm(ﬂg’, )¢' (<, Ju(;—g )}Hl

d,(¢)=
A [ e sin(2¢,)6(<))

_E;{_+ﬂ1008(l§f)¢'(§i )}” S )}-H:Z

. (g): (A-12)
A [ e cosh(44)8(<))

_E,Z_:‘{_Jrﬁiﬂsinh(ﬂ{i )8 (S, )}u S )}+C3

U
N
—_
[Tl
~

[, sinh (1<, )4(<,)
_+ﬁiﬂcosh(,1§i )o(C, )}u (¢-¢ )}+c4

SN PNS

o

where ¢ €y Cyy € aTE the integration constants. Inserting Egs.
(A.12) into Eq. (A.1) provides a suitable form of the Eigen-
mode to be used to obtain the explicit closed-form solution of
the problem of interest.
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