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An Exact Analytical Solution for Convective Heat Transfer in Elliptical Pipes 
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ABSTRACT: In this paper, an analytical solution for convective heat transfer in straight pipes with 
the elliptical cross section is presented. The solution is obtained for steady-state fluid flow and heat 
transfer under the constant heat flux at walls using the finite series expansion method. Here, the exact 
solution of Nusselt number as well as temperature distribution in terms of aspect ratio is presented as the 
correlation in the Cartesian coordinate system and validated with the previous investigations. It is shown 
that the minimum amount of Nusselt number, as well as the maximum absolute value of dimensionless 
temperature at the center of the cross section, are related to the aspect ratio equal to 1 (circular pipe). The 
solution indicated that the amount of Nusselt number is increased by changing the geometry of cross 
section from circular to an elliptical shape and it finally tends to 4356/833 at large enough aspect ratios. 
Our results also show that 95% of the increase in Nusselt number to the circular cylinder is related to 
aspect ratio equal to 18.36. The present method of solution could be used to obtain the exact solution of 
convective heat transfer in elliptical pipes for other thermal boundary conditions and fluid rheological 
behaviors.
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1- Introduction
The investigation of the convective heat transfer in 
straight pipes with various shapes of cross section has 
been an interesting subject for many researchers from the 
experimental, numerical and analytical point of view. This 
problem is very important in medical treatments, industrial 
processes, engineering applications and biological systems. 
The most of the previous studies in this field are restricted 
to the investigation of heat transfer and fluid flow in straight 
and curved pipes with circular cross section. Shah [1] 
investigated numerically the effect of the cross-sectional 
shape on the forced convective heat transfer inside straight 
ducts by considering isosceles triangular, rounded corner 
equilateral triangular, sine, rhombic, and trapezoidal cross-
sections. His results show that rounding the corners of the 
pipe cross-section increases the rate of the heat transfer. Shah 
and London [2] reviewed analytical solutions for laminar 
fluid flow and forced convective heat transfer in circular and 
noncircular pipes. They considered both H1 (axial uniform 
wall heat flux with peripherally uniform wall temperature) 
and H2 (The both circumferential and axial uniform heat 
flux) boundary conditions at walls in their study.  Wibulswas 
[3] used a numerical method to solve force convection heat 
transfer in rectangular, right-angled isosceles triangular and 
equilateral triangular ducts. Lyczkowski et al. [4] numerically 
studied the forced convective heat transfer of Newtonian fluid 
flow in a straight pipe with rectangular cross section. They 
simplified boundary conditions by ignoring axial conduction 
in the heat transfer equations. Zhang et al. [5] in an analytical 
and numerical investigation, studied convective heat transfer 
in the inlet thermal zone of ducts with various shapes of the 
cross-section. Their solution is valid for thermally developing 
and hydrodynamically fully developed laminar flow. Barletta 

et al. [6] in a numerical investigation studied the mixed 
convective heat transfer in a vertical rectangular duct. They 
used Galerkin finite element method to solve a dimensionless 
form of energy and momentum equations. Their results show 
that heat  transfer rate is affected by that aspect ratio as well 
as the ratio of the Grashof number to the Reynolds number. 
Nonino et al. [7] studied numerically the convective heat 
transfer of laminar flow in entrance thermal region of straight 
ducts under constant wall temperature boundary conditions. 
They considered temperature as a function of viscosity and 
showed that temperature dependence of the viscosity cannot 
be ignored. Rennie and Vijaya Raghavan [8] also investigated 
the effects of the temperature dependence of the viscosity 
on heat transfer in a horizontal cylinder for a double-pipe 
helical exchanger of non-Newtonian fluid. Iacovides et al. 
[9] studied experimentally and numerically the flow and heat 
transfer in straight ducts with ribs along two opposite walls. 
They found that the rate of heat transfer is greatly affected 
by the ribs. Some related studies have been also carried out 
which are generally focused on the heat transfer in rectangular 
ducts with ribs along the walls. ([10- 12]). Ray and Misra 
[13] studied convective heat transfer of fully developed 
laminar flow in straight ducts with square and triangular 
cross sections with rounded corners. Zhang and Chen [14] 
studied fluid flow and convective heat transfer in corrugated 
triangular cross section ducts under the uniform heat flux 
boundary condition. They showed that in contrast with 
parallel-plate ducts, these kinds of channels have the higher 
value of heat transfer rate. Shahmardan et al. [15] presented 
an analytical solution for temperature distribution and Nusselt 
number of convective heat transfer in straight ducts with the 
rectangular cross section under the constant heat flux at walls. 
Shahmardan et al. [16] in another investigation proposed an 
exact analytical solution for fully developed convective heat Corresponding author, E-mail: mh.sedaghat@gmail.com
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transfer in equilateral triangular with H1 boundary condition. 
Some studies have been carried out on convective heat 
transfer of non-Newtonian flows in rectangular ducts. Sayed-
Ahmed and Kishk [17] in a numerical investigation studied 
the laminar flow and heat transfer of Herschel-Bulkley fluids 
in the entrance region of a rectangular duct. They investigated 
the effects of the aspect ratio, Prandtl number, velocity, and 
pressure gradient on the Nusselt number. The effect of corner 
vortices in viscoelastic flows in straight rectangular ducts is 
also studied by Norouzi et al [18]. Their results show that the 
rate of heat and mass transfer in straight rectangular channels 
is enhanced by intensifying the corner vortices.
A cursory inspection of the aforementioned surveys clearly 
reveals that the bulk of the literature relates to a circular 
cylinder, followed by that of rectangular cross section. 
However, the limited body of knowledge relates  to the study 
of flow and heat transfer in the pipe with elliptical cross 
section. The fully developed laminar H1 and H2 heat transfer 
problem for elliptical ducts was first investigated by Claiborne 
[19]. He used Fourier series to solve the energy equation to 
obtain approximate temperature distribution and also the 
Nusslet number for various amounts of aspect ratios. Tao [20] 
by employing the method of complex variables studied the 
forced convection problems in few basic problems, including 
flows in equilateral triangular ducts and in elliptical tubes. 
This method [20] because of using a complex variable to 
solve the energy equation has some complexities to compute 
temperature distribution as well as Nusselt number. Cheng 
[21] studied natural convective heat transfer in a horizontal 
isothermal elliptical cylinder with temperature-dependent 
viscosity. This study [21] showed that the total heat transfer 
rate and the total skin friction of the elliptical cylinder with 
slender orientation are higher than those of the elliptical 
cylinder with blunt orientation. Moreover, increasing the 
viscosity-variation parameter enhances the heat transfer 
rates.  Sakalis et al. [22] numerically studied  the laminar 
fully developed and developing heat transfer in a straight pipe 
with the elliptical cross section under isothermal boundary 
condition. They showed that by increasing the aspect ratio 
of the ellipse, the friction factor is decreased. Their results 
also showed that in the thermally developing flow, Nusselt 
Number is increased by decreasing the aspect ratio.  Velusamy 
et al. [23] numerically studied fully developed laminar flow 
and heat transfer in ducts of the semi-elliptical cross section 
for isothermal and a uniform axial heat flux condition on the 
duct walls. They showed that for ducts in which the baseplate 
is on the major axis, friction factor and Nusselt number 
for the uniform heat flux condition are  increased as the 
aspect ratio decreases. They also represented that the ratio 
of the Nusselt number to friction factor is higher for semi-
elliptical ducts in comparison to that for other ducts, such 
as sinusoidal, circular segmental, and isosceles triangular 
ducts. Velusamy and Garg [24] studied the same problem for 
vertical elliptical ducts, including buoyancy forces and H1 
thermal boundary condition. Javeri [25] numerically analyzed 
the hydrodynamically developed and thermally developing 
flow into straight ducts of square, circular and elliptical 
cross-section, for the thermal boundary condition of linearly 
varying wall temperature in the axial direction (LAWT). In 
an experimental investigation, the simultaneously developing 
hydrodynamic and thermal flow in straight elliptical ducts 
with the LAWT boundary condition has been performed by 

Abdel-Wahed et al. [26].
According to the literature,  most of the previous studies deal 
with fluid flow and heat transfer in ducts with circular and 
rectangular cross section and only a few numerical studies 
are available about convective heat transfer in pipes with 
elliptical cross sections. While the flows in elliptical ducts are 
of increasing importance in microfluidics, where lithographic 
methods typically produce channels with the noncircular 
shape of cross section. These channels are widely used in 
biological kits (like the kits for extraction the DNA, detection 
of cancers cells and bacteria, blood sample preparation 
and glucose monitoring), fuel cells and cooling systems 
for small scales. The flow in elliptical pipes is especially 
important in microfluidic, compact heat exchangers and 
biological flows (such as flow in vessels). In this study, a new 
accurate technique based on an analytical solution is used for 
convective heat transfer in straight pipes with an elliptical 
cross section. The present analytical solution is a step forward 
in the field of heat transfer through non-circular pipes as a 
benchmark problem which is tested and validated based on 
the previous analytical studies. The proposed technique of 
the solution for flow in elliptical pipes could be generalized 
to  solve the other similar problems. The main novelty of 
this study is suggesting an analytical method to study the 
forced convection heat transfer in elliptical pipes which is 
characterized by simple computation, easy implementation 
of boundary conditions, easy to use in different geometries as 
well as using  in forced convection of dissipative fluid in the 
channel. The solution is obtained for steady convective heat 
transfer under the constant heat flux at walls using the series 
expansion method. The geometry of the problem is shown 
in Fig. 1. The closed form of dimensionless temperature 
distribution is obtained in Cartesian coordinate system. Here, 
the exact solution of the Nusselt number in terms of aspect 
ratio is presented.

2- Governing Equations
The governing equations of incompressible fluid flow and 
heat transfer in a duct with elliptical cross section consist 
of the continuity, momentum, and energy equations are 
presented as follows [2]:

. 0V∇ = (1a)

2.V V V P g V
t

ρ ρ µ
 ∂

+ ∇ = −∇ + + ∇ ∂ 


    (1b)

2.pc V T k Tρ ∇ = ∇   (1c)

Where V is the velocity vector, ρ is the density, P is the static 
pressure, t is the time, μ is the viscosity and T is the temperature 
of the fluid flow. The non-dimensional parameters of this 
problem can be expressed as:

Fig. 1. The geometry of duct in the present study

~ ~

~ ~



M. M. Shahmardan et al., AUT J. Mech. Eng., 1(2) (2017) 131-138, DOI: 10.22060/mej.2017.12310.5311

133

            

             

                

h h h

h b

w

hp

y z ay z a
d d d

b b b ub u
d a a u
k T TT q dc

k

η

α
ρ

= = =

= = = =

−
= = ′′

 

  



 

(2)

where y and z are the coordinates in the Cartesian coordinate 
system (see Fig. 1), a and b are the major and minor axis 
of the elliptical cross-section, η is the aspect ratio, α  is the 
thermal diffusivity coefficient and u is the main flow velocity 
of the fluid flow. In addition, dh is the hydraulic diameter, ub 
is the bulk velocity, and Tm is the mean temperature of fluid 
flow. These parameters are defined as follows [27]:

h

4A bd
P E(e)

π
= =



 (3a)

b A

1u u dA
A

= ∫ 
 (3b)

m pA
p b

1T c uTdA
c u A

ρ
ρ

= ∫  
 (3c)

where A and P are the cross-sectional area and perimeter 
of the duct, respectively. In addition, e is the eccentricity of 
the ellipse which has the value of aaaaaaaaaaaaaa and the 
function E is the complete elliptic integral of the second kind 
that  can be calculated as follows [27]:

/2 2 2

0
( ) 1 sin  E e e d

π
θ θ= −∫ (4)

Applying thermal energy balance on a differential control 
volume in the axial direction gives [26]:

m
b p m

b p

dT q pq pdx Au c dT cte
dx Au c

ρ
ρ

′′
′′ = ⇒ = =

  


(5)

The following condition exists for fully developed convective 
heat transfer in a closed channel:

0w

m w

T T
x T T
 ∂ −

= ∂ − 

 

 
(6)

Using Eqs. (5), and (6), and considering the constant heat flux 
at walls (q"=h(Tw-Tm)), we have [28]:

tanm w

b p

dT T dT q p Cons t
dx x dx Au cρ

′′∂
= = = =
∂

   
  

(7)

Inserting Eqs. (2) and (7) into Eq. (1c) and considering 
the fully developed rectilinear flow (setting the transverse 
velocity components to zero), the following dimensionless 
form of the heat transfer equation is obtained:

2 2

2 2 4 ( , )T T u y z
y z
∂ ∂

+ =
∂ ∂

(8)

The main flow velocity and flow rate of rectilinear flow in a 

duct with an elliptical cross-section are as follows [29]:

2 2 2 2

2 2 2 2

1( , ) ( ) 1
2

dp a b y zu y z
dx a b a bµ

 = − − − +  

   
  

  
(9a)

3 3

2 24
dp a bQ
dx a b

π
µ
 = −  + 

 


(9b)

The bulk velocity (ub) can be obtained as:

2 2

2 2

1
4b

Q dp a bu
A dx a bµ

 = = −  + 

  


 
(10)

Based on the Eqs. (9) and (10), the dimensionless main flow 
velocity can be expressed as follows:

2 2

2 22 1 y zu
a b

 = − − 
 

(11)

Inserting the Eq. (11) into the Eq. (8), the heat transfer 
equation of fully developed flow in a straight elliptical pipe 
is obtained:

2 2 2 2

2 2 2 28 1T T y z
y z a b
∂ ∂  + = − − ∂ ∂  

(12)

Based on the definition of dimensionless temperature, the 
boundary condition of Eq. (11) can be expressed as (at wall:  
T=Tw):

2 2

2 2   1:         0y zat T
a b

+ = = (13)

3- Exact Solution
The governing equation of non-dimensional temperature 
is expressed in Eq. (12). The final solution of this partial 
differential equation is the summation of the general and 
particular solution. According to a lemma in calculus, if 
we found a particular solution which satisfies the boundary 
conditions of a differential equation, then the general solution 
will be zero. In this condition, the final solution is completely 
equal to the particular solution.  In this study, the particular 
solution is polynomial because Eq. (12) is linear and the non-
homogenous term of this equation is a polynomial. Here, we 
found a particular solution to Eq. (12) which satisfies the 
boundary condition (Eq. (13)). According to the mentioned 
lemma, the general solution is zero and the particular 
solution is the final solution. Due to the symmetry properties 
of temperature around y and z axis, only even powers of 
these variables should be considered. Thus a fourth-degree 
polynomial regarding y and z has been assumed for the 
dimensionless temperature distribution (T) as follows:

4 4 2 2
1 2 3 4

2 2
5 6

( , )T y z C y C z C y C z
C y z C

= + + +

+ +
(14)

It should be noted that according to Eq. (12) a higher degree 
of the polynomial (e.g. 6, 8 …) leads to zero the coefficients 
of these terms.
By substituting the Eq. (14) into Eq. (12), we have:
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( ) ( )

( )

2 2
1 5 2 5

2 2

3 4 2 2

12 2 12 2

2 8 1

yy zzT T C C y C C z

y zC C
a b

+ = + + +

 + + = − − 
 

(15)

By comparing the terms of polynomial coefficients on both 
sides of the equation, we have:

1 5 2

46C C
a

+ = − (16a)

2 5 2

46C C
b

+ = − (16b)

3 4 4C C+ = (16c)
By applying the Eq. (15) into boundary condition (Eq. (13)) 
and comparing the terms of polynomial coefficients, three 
other equations obtained:

4 2

1 2 54 2 0a aC C C
b b

+ − = (16d)

4 2
2

1 3 4 52 22 0a aC C C a C
b b

− − + + = (16e)

4 2
1 3 6 0a C a C C+ + = (16f)

By solving the Eqs. (16), six unknown coefficients are 
achieved as:

( )
( )

4 2 2

1 2 4 4 2 2

2 5
3 6

b a b
C

a a b a b
− +

=
+ +

(17a)

( )
( )

4 2 2

2 2 4 4 2 2

2 5
3 6

a a b
C

b a b a b
− +

=
+ +

(17b)

( )
( )( )

2 4 4 2 6

3 2 2 4 4 2 2

4 16 5 3
3 6

a b a b b
C

a b a b a b
+ +

=
+ + +

(17c)

( )
( )( )

4 2 2 4 6

4 2 2 4 4 2 2

4 16 5 3
3 6

a b a b a
C

a b a b a b
+ +

=
+ + +

(17d)

( )2 2

5 4 4 2 2

4
6

a b
C

a b a b
− +

=
+ +

(17e)

( )
( )( )

4 4 6 2 2 6

6 2 2 4 4 2 2

2 26 5 5
3 6

a b a b a b
C

a b a b a b
− + +

=
+ + +

(17f)

Based on the Eqs. (2) and (3a), we have:
22

2
2 2

( ) 1

h

a E ea
d π η

 = =  
 


(18a)

22
2

2

( )

h

b E eb
d π

 = =  
 


(18b)

Eq. (17) can be presented in terms of aspect ratio using Eqs. 

(2) and (18):

( )
( )

2 4 2

1 4 2

2 5
( ) 3 6 1

C
E e

η ηπ
η η

+ 
= −  + + 

(19a)

( )
( )

2 2

2 4 2

2 5 1
( ) 3 6 1

C
E e

ηπ
η η

+ 
= −  + + 

(19b)

( )
( )

2 4 2

3 6 4 2

4 3 16 5
3 7 7 1

C
η η η
η η η

+ +
=

+ + +
(19c)

( )
( )

4 2

4 6 4 2

4 5 16 3
3 7 7 1

C
η η

η η η
+ +

=
+ + + (19d)

( )2 2 2

5 4 2

4 1
( ) 6 1

C
E e

η ηπ
η η

+ 
= −  + + 

(19e)

( )
( )

2 4 2

6 6 4 2

2 5 26 5( )
3 7 7 1

E eC
η η

π η η η
+ + = −  + + + 

(19f)

Finally, by substituting Eq. (19) into Eq. (14), the non-
dimensional temperature profile is obtained as follows:

( )
( ) ( )

( )

( ) ( )

2

6 4 2

4 4 2 4 4 2 4

2
2 4 2 2

4 2 2 2 4 2 2 2

4
4 2

2
( )( , )

3 7 7 1

6 5 5 6 1

( )2 3 16 5

5 16 3 6 2 1

( ) 5 26 5

E eT y z

y z

E e y

z y z

E e

π

η η η

η η η η η

η η η
π

η η η η η

η η
π

 
−    = + + + 

+ + + + + +

  − + +   
+ + + + + +

 + + +  
  

(20)

By substituting y=0 and z=0 in Eq. (20), the value of 
dimensionless temperature at the center of cross section is 
obtained as:

( )
( )

2 4 2

6 4 2

2 5 26 5( )
3 7 7 1C

E eT
η η

π η η η
+ + = −  + + + 

(21)

The value of E(e) can be calculated approximately as [27]:

( ) 3( ) 1 1
4 10 4 3

sE e
s

π η  ≈ + + + − 
(22)

Where:

( )
( )

2

2

1
1

s
η
η

−
=

+
(23)

Thus the approximate value of Tc is obtained as:

( )( )
( )

24 2

6 4 2

2

5 26 5 1
24 7 7 1

31
10 4 3

CT

s
s

η η η
η η η
+ + +

≈ − ×
+ + +

 + + − 

(24)

The convection coefficient can be found using the following 



M. M. Shahmardan et al., AUT J. Mech. Eng., 1(2) (2017) 131-138, DOI: 10.22060/mej.2017.12310.5311

135

relation:

w m

qh
T T

′′
=

−  (25)

Therefore, using Eq. (25) and non-dimensional form of Tm 
from Eq. (2), the Nusselt number is calculated using the 
following equation:

1 1
1

m
A

Nu
T uTdA

A

= − = −
∫

(26)

Using the obtained temperature distribution, the Nusselt 
number can be calculated as:

( )( )
( )

2 2 4 4 2 2

2 2 2 2 4 4

9 6
98 17 17

a b a b a b
Nu

a b a b a b
+ + +

=
+ +

(27)

Using Eqs. (18), Eq. (27) is simplified as:

2 6 4 2

4 2

7 7 19
( ) 17 98 17

Nu
E e
π η η η

η η
  + + +

=   + + 
(28)

Eq. (28) presents the Nusselt number of elliptical pipes in 
terms of the aspect ratio. 
Using Eq. (22) and (23) the approximate value of Nu can be 
obtained as:

( ) ( )

2

6 4 2

2 4 2

10 4 3144
10 3 4 3

7 7 1
1 17 98 17

sNu
s s

η η η
η η η

 + −
≈ × 

+ + − 
+ + +

+ + +

(29)

4- Results and Discussion
Fig. 2 shows the comparison of the Nu number versus aspect 
ratio (η) for forced convection heat transfer in elliptical pipes 
between the current analytical solution (Eq. (29)) and the 
study of Shah and London [2]. As this figure indicates, both 
results are in a suitable agreement.

As the second validation test, the results of the present 
analytical solution for convective heat transfer in straight 
ducts with the circular cross section under the constant heat 
flux at the wall are presented. For circular ducts (a=b), we 
have:

a b or 1η= = (30)
And also we have [27]:

e 0 and E(0)
2
π

= = (31)

By substituting Eqs. (30) and (31) in Eq. (28) or Eq. (29), the 
Nusselt number is calculated as:

48Nu
11

= (32)

The above value is the Nusselt number of fully developed flow 
and heat transfer in straight circular pipes under the constant 
heat flux at the wall which is reported in the literature. This 
finding indicates that the result of the present study is valid 
for this test case.
 Eq. (29) calculates the same value for the Nusselt number at 
η→0 and η→∞ as:

4356Nu
833

≈ (33)

It is important to remember that these two limit cases are 
similar for ellipses (refer to the definition of aspect ratio in 
ellipses) and the current exact solution presents an identical 
result for them. 
Fig. 3 shows contours of dimensionless temperature 
distribution for some different aspect ratios. This figure 
indicated that the isothermal lines are in forms of concentric 
ellipses. To further evaluate, Fig. 4(a) depicts the absolute 
value of dimensionless temperature distribution at the center 
of the cross section as a function of aspect ratio. As seen in 
this figure, the centerline dimensionless temperature reaches 
a peak value of 9/24 at η=1 (circular cylinder) and reduces 
by increasing (or decreasing) the value of aspect ratio and 
tends to 245/726 by substituting η→∞ (or η=0) into Eq. 
(24). Although as Fig. 4(a) indicates, by increasing the value 
of aspect ratio from 24, the dimensionless temperature at 
the center of duct almost remains constant. To examine the 
effect of aspect ratio on heat transfer processes, the values 
of the average Nusselt number as a function of aspect ratios 
are shown in Fig. 4(b). As  evident, the minimum value of 
the Nusselt number is observed for the circular cross section 
(48/11). This finding indicated that the minimum amount of 
heat transfer coefficient (h) is related to the circular shape of 
cross section.
Due to the constant value of heat flux at the walls, the 
temperature difference between the wall temperature and mean 
temperature should be maximized in a circular pipe to obtain 
the minimum value for Nusselt number. The dimensionless 
temperature is defined based on the temperature difference 
between the wall and flow (see Eq. (2)). Therefore, the 
dimensionless temperature at the center of the cross section 
is maximum in the circular pipe which is shown in Fig. 4(a). 
Fig. 4(b) also indicates that the value of Nusselt number 
increases by changing the cross section from circle to ellipse. 
It means that  changing the cross section from circular to 

Fig. 2. The compression of Nusselt number versus aspect 
ratio (η) for forced convection heat transfer in elliptical pipes 
between the current analytical solution (Eq. (28)) and study of 

Shah and London [2]

~ ~
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elliptical cylinder leads to an enhancement in heat transfer 
rate. 

According to Eq. (29), the Nusselt number tends to the value 
of 4356/833 at large enough aspect ratios. However, as Fig. 
4(b) illustrates, by increasing the value of aspect ratio from 
24 Nusselt number reaches almost the fixed value. It means 
that when η ≥ 24 aspect ratio does not affect heat transfer 
rate from the elliptical cylinder. Table 1 shows an increase in 
Nu number of the elliptical cylinder to the circular cylinder 
with respect to a maximum increase in Nu to circular 
cylinder versus the aspect ratio. In this table NuC and Nu∞ 
are the Nusselt number for circular and elliptical cylinders, 
respectively when η→∞.

As this table indicates, 95% of the increase in Nu number 
to the circular cylinder is related to η=18.36. Hence, by 
choosing this aspect ratio for the elliptical cylinder, 95% of 
maximum heat transfer rate could be obtained.
Fig. 5 shows the distribution of Nusselt number in terms 
of dimensional major and minor axes of the elliptical cross 
section. As shown in the figure again, the minimum amount 
of Nusselt number is related to the circular pipes and changing 
the cross section from circular to elliptical duct leads to an 
increase in heat transfer rate.

η=1

η=1/2

η=1/4
Fig. 3. Dimensionless contours of temperature at different 

aspect ratios

(a)

(b)
Fig. 4. Diagrams of the (a) absolute value of dimensionless 
temperature at the center of cross section and (b) Nusselt 

number versus the aspect ratio

( )
( )

C

C

Nu Nu
Nu Nu∞

−
− 0.5 0.6 0.7 0.8 0.9 0.95

η 3.2 4.03 5.13 7 11.46 18.36

Table 1. Increase in Nu number of elliptical cylinder to circular 
cylinder with respect to maximum increase versus the aspect 

ratio

Fig. 5. Diagrams of Nusselt number in terms of the major and 
minor axes  of the elliptical cross-section
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5- Conclusion
In this paper, an analytical solution for convective heat 
transfer in straight elliptical pipes is presented. The solution 
is obtained using finite series expansion method for fully 
developed heat transfer under the constant heat flux at walls. 
The correlation of temperature distribution is obtained in the 
Cartesian coordinate system and also the variations of Nusselt 
number as well as the dimensionless temperature at the center 
of cross section are expressed in terms of aspect ratio as the 
new equations. These correlations have been validated with 
the previous investigations. The solution indicated that the 
Nusselt number is increased by changing the geometry of 
cross section from circular to elliptical shape from 48/11 to 
4356/833 for large enough aspect ratios. Because of constant 
value of heat flux at walls, the dimensionless temperature at 
the center of the cylinder which is the difference between the 
wall and mean temperatures should be maximized in a circular 
pipe to obtain the minimum value for Nusselt number. This 
temperature decreases from 9/24 for the circular cylinder 
to 245/726 for large enough aspect ratio of an elliptical 
cylinder. Our correlations show that the results are identical 
for η→0 and η→∞ because these two limit cases are related 
to a similar geometry. Our results also show that 95% of the 
increase in the Nusselt number of the elliptical cylinder to 
circular cylinder  happens  in η=18.36. The authors believe 
that the present method of solution could be used to obtain the 
exact solution of convective heat transfer in elliptical pipes 
for other thermal boundary conditions and fluid rheological 
behaviors.
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