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Natural Frequency Analysis of Composite Skew Plates with Embedded Shape Memory 
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ABSTRACT: In this study, free vibration analysis of laminated composite skew plates with embedded 
shape memory alloys under thermal loads is presented. The plates are assumed to be made of NiTi/Graphite/
Epoxy with temperature-dependent properties. The thermo-mechanical behavior of shape memory alloy 
wires is predicted by employing one-dimensional Brinson’s model. The governing equations are derived 
based on first-order shear deformation theory and solved using generalized differential quadrature 
technique as an efficient and accurate numerical tool. Some examples are provided to show the accuracy 
and efficiency of the applied numerical method by comparing the present results with those available 
in the literature. A parametric study is carried out to demonstrate the influence of skew angle, pre-strain 
and volume fraction of shape memory alloys, temperature, and stacking sequence of layers on the natural 
frequencies of the structure. Results represent that shape memory alloys can change the vibrational 
characteristics of shape memory alloy hybrid composite skew plates by a considerable amount. The 
numerical results also reveal that the effect of shape memory alloy wires on natural frequencies of 
composite plates with simply supported boundaries is higher than those with clamped boundaries.
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1- Introduction
Composite plates are one of the most important structures 
in engineering applications. These structures are often used 
in thermal environments where they can generate thermal 
stresses and affect the vibrational characteristics of structure 
[1-5]. Although skew plates play an important role in 
engineering structures, only few research works have been 
devoted to analyzing the free vibration of laminated skew 
plates under thermal loads. Among those available, vibration 
behavior of thermally stressed laminated composite skew 
plates was discussed by Singha et al. [6].  They studied the 
first three natural frequencies of structure in both pre and 
post-buckled states and investigated the effects of some 
parameters like fiber orientation, skew angle, and boundary 
condition on the vibrations of the plate. Using various 
flexural theories, the vibration characteristics of thermally 
induced skew sandwich plates were  examined by Heuer [7]. 
Recently, Singh and Chakrabarti [8] have used an efficient 
C0 FE model developed based on refined higher order zigzag 
theory to investigate static, vibration, and thermal buckling 
of laminated composite skew plates. They showed that 
this model is able to satisfy the inter-laminar shear stress 
continuity at the interfaces and zero transverse shear stress 
conditions at top and bottom of the structure. A comparison 
was made between their results and the available data in the 
literature that showed the efficiency of the applied model for 
the analysis of skew plates.
A way of solving the problem related to induced thermal 
stresses because of the thermal environment which can have 
destructive effects on the stiffness of laminated composite 
structures is embedding Shape Memory Alloy (SMA) wires 
in the layers. It has been shown that SMAs are able to 
compensate the compressive thermal stresses by a considerable 

amount because of their extraordinary characteristics, 
namely Shape Memory Effect (SME) which can recover 
predetermined large strains when heated and Pseudo-
Elasticity (PE) whereby SMAs show the pseudo-elasticity 
behavior and can recover large strains during mechanical 
loading-unloading patterns at high temperatures [9]. To 
this end, many experimental and numerical research works 
have been dedicated to highlight the influence of embedded 
SMA fibers on the natural frequency response of Shape 
Memory Alloys Hybrid Composite (SMAHC) structures. 
The vibration characteristics of laminated composites with 
embedded unidirectional and woven SMA was investigated 
experimentally by Zhang et al. [10]. For unidirectional 
case, the effect of both SMA arrangement and temperature 
on the natural frequency of structure was observed, and 
for the woven case, the influence of temperature and SMA 
volume fraction on the stiffness of plate was examined using 
vibration tests. The experimental results were compared with 
the analytical solution. The comparison showed a reasonable 
agreement between the numerical results and experimental 
responses. Yongsheng and Shuangshuang [11] studied free 
and forced flexural vibration of large deformation SMAHC 
plate using Brinson model. The boundary conditions were 
assumed to be simply supported and the vibrational response 
of structure was  obtained employing Galerkin method. A 
parametric study was carried out to show the role of some 
parameters such as  SMA volume fraction, temperature 
and aspect ratio on the dynamical behavior of the structure. 
The radial vibrations of SMAHC cylindrical shells under a 
harmonic internal pressure were analyzed using differential 
quadrature method and Newmark approach by Forouzesh and 
Jafari. [12]. The boundary conditions were taken to be simply 
supported, and the governing equations were derived based 
on Donnell-type classical shell theory and using Hamilton’s Corresponding author, E-mail: shakeri@aut.ac.ir
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principle. Boyd–Lagoudas model was also implemented 
to predict the thermo-mechanical behavior of SMA fibers. 
Parhi and Singh [13] presented a nonlinear free vibration 
analysis of SMAHC spherical and cylindrical composite 
shell panels. The governing equations were derived based 
on the higher-order shear deformation plate theory  using 
nonlinear von-Karman strain displacement relations and were 
solved by applying nine-nodded isoperimetric element. The 
influence of pre-strain of SMAs, volume fraction of SMAs, 
temperature, and curvature on the linear and non-linear 
frequency of structure were discussed in detail. A nonlinear 
dynamic analysis of a sandwich plate with the flexible core 
and SMAHC face sheets was provided by Dehkordi et al. [14] 
using the mixed Layer-Wise (LW)/ Equivalent Single Layer 
(ESL) models. In order to simulate the non-linear thermo-
mechanical behavior of SMA fibers, Brinson model was 
applied. The effective parameters on the dynamic behavior 
of structure such as volume fraction, location of SMAs, the 
thickness of face sheets, plate aspect ratio, and boundary 
conditions were comprehensively studied. The nonlinear free 
vibration of thermally buckled SMAHC sandwich plate was 
examined by Samadpour et al. [15] using Brinson model. The 
nonlinear equations of motion were derived based on First-
order Shear Deformation Theory (FSDT) and von Karman 
geometric nonlinearity through Hamilton principle, and the 
dynamic behavior of sandwich plates was investigated via 
Galerkin weighted residual method. The obtained results of 
this study  showed that SMA fibers can significantly affect the 
natural frequency and post-buckling deflection of sandwich 
plates. 
It can be found from the literature survey that, to the best 
of the authors’ knowledge, there is no published work on 
the vibrational behavior of thermally induced laminated 
composite skew plates with the embedded SMA wires. 
Therefore, the present work aims to analyze natural 
frequency of SMAHC skew plates in thermal environment. 
A parametric study is presented to highlight the role of some 
parameters like pre-strain and volume fraction of SMAs, 
different boundary conditions, temperature, and thickness of 
plate on free vibration of laminated composite skew plates. 
The governing equations are derived based on FSDT via 
Hamilton principle, and the natural frequency parameters 
of the structure are obtained using Generalized Differential 
Quadrature (GDQ) approach. Some numerical examples are 
also provided to show the accuracy of the applied numerical 
method.

2- Problem Formulation
2- 1- Shape memory alloys
SMAs have a phase with high-temperature called austenite 
(A) and a low-temperature one, called martensite (M) 
which can be existed in two forms, twinned and detwinned 
martensite (Fig. 1). The reversible transformation from 
austenite to martensite and vice versa is the main reason for 
the incomparable behavior of SMAs. Brinson [9] introduced 
an acceptable model to predict SMA behavior which was 
matched with the experimental results. According to this 
model, the volume fraction of martensite phase is decomposed 
into two components as follows

s Tξ ξ ξ= + (1)
where, ξT and ξs denote the volume fractions of martensite 

produced by temperature and stress, respectively. The 
modulus of elasticity, and generated stress can be obtained as

( ) ( )A A ME E E Eξ ξ= + − (2)

( )( )s L sE Tσ ξ ε ε ξ α= − + ∆ (3)
According to Ref. [9], martensite fraction during heating 
stage when T >As and CA(T-Af )<σ<CA(T-As) can be calculated 
in the form of
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where subscript ‘0’ indicates the initial state of a parameter. 
Also, Af and As denote austenite start and austenite finish 
temperatures, respectively, and CA represents the slope of the 
curve shown in Fig. 1 presumed to be constant. The details 
of Brinson model are comprehensively explained in Ref. 
[9]. The properties of SMA/fiber/epoxy composites can be 
obtained using the following relations
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(5)

where the subscripts ‘m’ and ‘s’ mean the composite matrix 
and SMA fiber, respectively. Moreover, parameters E, G, v, 
α, ρ and Vs denote Young modulus, shear modulus, Poisson 
ratio, thermal expansion coefficient, material density and 
volume fraction of SMA fibers, respectively.

2- 2- Governing equations
Consider a rectangular composite plate with the lengths of a 
and b, and the thickness of  h , as shown in Fig. 2(a). Based on 
FSDT, the displacement components are obtained as
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where u0 and v0 are the displacements of the middle surface 
in the x and y directions, w0 is the transverse deflection, and 
φx and φy are the rotations of the middle surface of the plate 
about x and y axes, respectively. The strain-displacement 
relations are defined as
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The constitutive law for SMAHC plates under thermal loads 
are as follows
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where ΔT=T-T0, T0 is the reference temperature, T denotes the 

temperature of the structure, Qij represents the plane stress-
reduced stiffness, and αij are thermal expansion coefficients 
which all can be found in Ref. [15]. The stress resultants can 
be calculated as

/2

/2

11 12 16 11 12 16

12 22 26 12 22 26

16 26 66 16 26 66

11 12 16 11 12 16

12 22 26 12 22 26

16 26 66 16 26 66

x xx

y yy

h
xy yz

x xxh

yyy

xyxy

N
N
N

dz
M z

zM
zM

A A A B B B
A A A B B B
A A A B B B
B B B D D D
B B B D D D
B B B D D D

σ
σ
τ

σ
σ
τ

−

   
   
   
     = =  

  
  
  
     






∫

0

0

0 0

x

y

yx

T r
x x
T r
y y

T r
xy xy

T r
x x
T r
y y

T r
xy xy

y yz
s

x

u
x
v
y
u v
y x

x

y

y x

N N
N N

N N

M M
M M

M M

Q
k

Q

φ

φ

φφ

τ

τ

∂ 
 ∂ 
∂ 

 ∂
  ∂ ∂   + ∂ ∂   

   ∂   
∂   

   ∂   
∂ 

 ∂∂ +
 ∂ ∂ 

   
   
   
   
   − +   
   
   
   
   
   

 
= 

 

0
/2

44 45

45 55/2 0

h y

s
h xz

x

w
A A ydz k
A A w

x

φ

φ−

∂ +     ∂ =      ∂    + ∂ 

∫

(9)

Fig. 1. Schematic phase diagram for SMAs

(a)

(b)
Fig. 2. Schematic of the rectangular and skew composite plates 

with embedded SMA in bottom and top layers
_
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where ks is the shear correction factor, NT and MT represent 
the thermal force and thermal moment resultants, and; 
furthermore, Nr and Mr indicate the induced force and bending 
moment resultants by SMA wires defined as
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Using Hamilton’s principle, the out-of-plane free vibration 
equations of rectangular composite plates can be yielded as
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In the present work, simply supported and clamped boundary 
conditions are considered. From pre-buckling analysis, the 
non-linear terms, involving  Nx, Ny and Nxy in Eq. (11c) are 
ignored [16]. Thus, by inserting  Eq. (9) into Eq. (11), the 
out-of-plane free vibration equations of rectangular SMAHC 
plates in thermal environments can be obtained as
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Eqs. (12a-12c) are governed for SMAHC rectangular 
composite plates, however the aim of this paper is to analyze 
thermal vibrations of SMAHC skew plates. The easiest 
way to derive the free vibration equations of skew plates is 
to transform the x-y equations into ζ-η domain (Fig. 2(b)). 
To this end, the following linear transformation rules are 
employed to Eqs. (12a-12c).
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As mentioned before, in the present study, SMAHC skew 
plates with simply supported or clamped boundary conditions 
are considered. The boundary conditions of plates are specified 
by the letter symbols. For example, SCSC represents that the 
plate is simply supported at x=0 , a and is clamped at y=0 , 
b. The conditions for the clamped (C) and simply supported 
(S) edges become

:
0 ; 0 ; 0s x y n x y

y x x y

Clamped
W n n n nϕ ϕ ϕ ϕ ϕ ϕ= = − + = = + = (15a)

2 2

:
0 ; 0 ;

2 0

s x y
y x

nn xx x yy y xy x y

Simply Supported
W n n

M M n M n M n n

ϕ ϕ ϕ= = − + =

= + + =
(15b)

where nx and ny are the x- and y-components of the unit 
normal vector to an arbitrary edge of the plate, respectively.

2- 3- GDQ method
In the present work, GDQ method is used to obtain the natural 
frequencies of SMAHC skew plates. Assume a continuous 
function f(ζ,η) having its field on a 0 ≤ ζ ≤ a , 0 ≤ η ≤ b. Based 
on this approach, the rth order of the function with respect to 
ζ, at point (ζi ,ηi) can be approximated as [17, 18]:
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From Eq. (16), one can see that the important components 
of DQ method are weighting coefficients and the choice of 
sampling points. The weighting coefficients for the first-
order derivatives in the ζ- direction are determined as [17, 18]
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where

The weighting coefficients for second-order derivatives in the  
ζ- direction are also determined as

(2) 2[ ] [ ] [ ][ ] [ ]ij ij ij ij ijc B A A Aζ ζ ζ ζ ζ= = = (18)

Similarly, the weighting coefficients for ζ- direction can be 
obtained. Here, Chebyshev–Gauss–Lobatto quadrature points 
are used, that is [17]
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Applying GDQ method on the free vibration equations, the 
following discretized equations are obtained.
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The GDQ approach is also applied to the boundary conditions 
of Eqs. (15a-15b)
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Thus, the matrix form of the discretized equations of motion 
and boundary conditions can be written as equations of 
motion:

[ ]{ } [ ]{ } [ ]{ } {0}db b dd d dS U S U M U+ + = (22a)

[ ]{ } [ ]{ } {0}bb b bd dS U S U+ = (22b)

where {Ud} and {Ub} are the domain and the boundary 
degrees of freedom, respectively. Also, [Sij] and [Mij] with 
(i,j=b,d) denote the stiffness and mass matrices, respectively. 
Combining Eqs. (22a) and (22b) and also considering the 
harmonic nature of the motion, the following standard 
eigenvalue problem can be obtained.

2([ ] [ ]){ } {0}dS M Uω− = (23)

where [S]=[Sdd]-[Sdd][Sbb]
-1[Sbd]; ω is the natural frequency of 

SMAHC skew plate, and {Ud} is the amplitude of motion. As  
can be seen, the natural frequencies of the structure can be 
obtained from Eq. (23).

3- Results and Discussion
In this section, free vibration analysis of SMAHC skew plates 
is studied. To this end, first, a comparative study is provided 
to verify the present numerical solution. Then, the importance 
of some parameters such as stacking sequence of layers, 
volume fraction and pre-strain of SMA wires and geometrical 
parameters in the natural frequency response of SMAHC 
skew plate is  highlighted. As  shown in Fig. 2(b), in the 
present work, the SMA wires are supposed to be embedded 
in the outermost layers called SMA reinforced layers, and be 
aligned to the Graphite fibers. The skew plate is assumed to 
be made of NiTi/Graphite/Epoxy with temperature-dependent 
properties shown in Tables 1 and 2.  The vibrational behavior 
of the structure is evaluated by defining a non-dimensional 

frequency parameter, aaaaaaaaaaaaaaaaaaa , in which ρm and 

E2m are the density and transverse modulus of graphite/epoxy 
matrix, respectively.
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3- 1- Verification of numerical results
The accuracy of the applied numerical method is investigated 
by providing three examples. In the first example, the non-
dimensional buckling temperatures of composite skew plates 
obtained from the present work are compared with other 
available data in the literature for different skew angles 
and boundary conditions. To this aim, the temperature of 
environment is increased until the frequency of structure 
reaches to zero. The material properties are assumed to be 
as follows:

It is observed  from Table 3 that GDQ results are in a good 
agreement with those reported in Refs. [19, 20] and this 
numerical method is able to handle the analysis of composite 
skew plates in the pre-buckling domain. Further verification 
of GDQ results is studied by comparing the natural frequency 
of SMAHC rectangular plates with similar results obtained 
by an analytical solution discussed in Ref. [21], as depicted 
in Fig 3. The numbers in parentheses denote the vibrational 
modes of analytical solution. The analytical results of Fig. 3 
state that for ΔT <236oC, the mode (1,1) yields a minimum 
natural frequency of the structure, while for ΔT > 236oC, the 
fundamental natural frequency of plate occurs at mode (1, 
2). However, it was  also observed that fundamental natural 
frequencies of GDQ approach fit analytical results very well 
and it can obtain the fundamental natural frequencies of 

SMAHC plates with a high accuracy.  The third numerical 
example is presented to show the validity of applied Brinson 
model. In this example, critical buckling temperatures of 
rectangular SMAHC plates are compared with those obtained 
by Asadi et al. [22]. Table 4 reveals that. To this aim, the 
temperature is increased until the frequency of structures 
reaches to zero. Table 4 reveals that GDQ can yield the 
buckling temperature of SMAHC plate with a negligible 
error.

Value Unit 
EA=67 GPa

EM=26.3 GPa
Mf=9 oC

Ms=18.4 oC
As=34.5 oC
Af=49 oC
CM=8 MP/ oC

CA=13.8 MP/ oC
 εL=0.067 -
vs=0.33 -

 αs=10.26×10-6 1/ oC
Θ=0.55 MP/ oC

Table 1. The material properties of graphite/epoxy [15]

Properties
E1m=E0

1m(1+ E1
1mΔT); E0

1m=155; E1
1m=-3.53×10-4;

E2m=E0
2m(1+ E1

2mΔT); E0
2m=8.07; E1

2m=-4.27×10-4;
G12m=G0

12m(1+ G1
12mΔT); G0

12m=4.55; G1
12m=-6.06×10-4;

α1m=α0
1m(1+ α1

1mΔT); α0
1m=-0.07; α1

1m=-1.25×10-4;
α2m=α0

2m(1+ α1
2mΔT); α0

2m=30.1; α1
2m=0.41×10-4;

v12m=0.22

Table 2. The material properties of graphite-epoxy

Fig. 3. Comparison of analytical solution with GDQ results 
for natural frequencies of SMAHC rectangular plates under 

thermal environment in pre-buckling region

Boundary 
Conditions ψ Present [19] [20]

SSSS 0 0.0778 0.0770 -
15 0.0799 0.0784 0.0794
30 0.0888 0.0849 0.0860
45 0.1129 0.1031 0.1041

SCSC 0 0.1091 0.1069 -
15 0.1132 0.1108 0.1134
30 0.1277 0.1243 0.1286
45 0.1588 0.1533 0.1619

CCCC 0 0.1691 0.1655 -
15 0.1712 0.1674 0.1712
30 0.1799 0.1753 0.1799
45 0.2041 0.1982 0.2044

Table 3. Comparison of critical buckling temperature 
parameters (λT=α0Tcr) of [0o / 90o]s skew plates (a/b=1 , h/b=0.1 , 

α0=10-6 1/oC)

Vs

[90o,0o,90o,0o]s [0o,0o,90o,0o]s

present [22] present [22]
Without 

SMA 210 204 (1,1) 208 205 (1,1)

5% 237 231(1,1) 237 233(1,1)
10% 263 259(1,1) 250 252(1,2)
15% 291 286(1,1) 262 261(1,2)
20% 318 313(1,1) 272 272(1,2)
30% 372 367(1,1) 292 294(1,2)

Table 4. Comparison of the critical temperature of SMAHC 
rectangular plates (a/b=1 , h/b=1/50)

13 231 12
2 3

2 2 2 2

631 2
0

0 0 0

15 , , 0.5 , 0.3356 ,

0.015 , 1 , 1 10 /

G GE GE E
E E E E

Cαα α α
α α α

−

= = = = =

= = = = × 

*The numbers in the parentheses indicate the buckling modes from analytical solution
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3- 2- Temperature dependency of materials
The influence of temperature dependency of material 
properties on vibrational behavior of SMAHC skew plates 
is illustrated in Fig. 4. In this figure, TD represents the 
temperature dependent material properties and TID means 
the material properties do not  change with variations of 
temperature(E1

1m , E1
2m , G1

12m , α1
1m , α1

2m=0). This figure 
illustrates the variations of fundamental frequency parameters 
of an eight-layer  [30o/-45o/45o/90o]s SMAHC skew plates 
with simply supported boundaries against temperature. From 
the diagrams of Fig. 4, two conclusions can be inferred; 
1: materials with TD properties lead to a more natural 
frequency, compared to the TID ones, and 2: the effect of 
temperature dependency on the vibrations of SMAHC plates 
becomes more considerable by increasing SMA volume 
fraction. In next sections, only materials with TD properties 
are considered for the study.

3- 3- Volume fraction of SMAs
Fig. 4 can also give some information about the role of the 
volume fraction of SMA wires in free vibrations of laminated 
composite skew plates. It is found that with the increase of 
temperature, the fundamental natural frequency of plates 
without SMA decreases continuously and it reaches to zero 
(buckling temperature), but the fundamental frequency 
parameter of structures with embedded SMAs first decreases, 
then increases to a maximum value and finally decreases 
to zero. It should be also noted that, as it can be observed 
from Fig. 4, more SMA wires lead to a higher fundamental 
frequency at temperatures above Af . Unlike this region, when 
T < Af (ΔT < 30o), SMA volume fraction has a destructive 
role in the vibrational behavior of the structure. In other 
words, by increasing the  embedded shape memory wires, 
the fundamental natural frequency of structure decreases 
when the temperature is below Af . This is due to the fact 
that, in this region, plates with SMA wires have more density 
without producing tensile force to affect the stiffness of the 
structure. Therefore, embedding more SMA wires makes 
the structure heavy without any effects on the stiffness of 
structure and consequently results in a decrease in vibrational 
characteristics of the plate.

3- 4- Pre-strain of SMA fibers
The next parametric study is dedicated to show the influence 

of pre-strain of SMA wires on vibration characteristics of 
SMAHC skew plates. Fig. 5 confirms that variations of pre-
strain do not have any significant influence. The figure also 
states that variations of pre-strain do not have any significant 
influence on free vibration of composite plates when T < 
Af , but the role of pre-strain of SMA wires becomes more 
noticeable at higher temperatures. From numerical point 
of view, and as it is obvious from Fig. 5, by changing the 
value of ε0 from 0.1% to 1% when ΔT=80o, the first natural 
frequency of composite skew plate improves up to  300%  
(from 0.4137 to 1.706).

3- 5- Stacking sequence of layers
Now, variations of the fundamental natural frequency of 
simply supported SMAHC plates versus stacking sequence 
of layers is investigated at ΔT=100o. First, the changes 
of the first natural frequency of a square [θ/-θ]s composite 
plate are examined by focusing on Figs. 6(a-b) in which 
θ varies from -90o to 90o.  As  expected, the diagrams are 
symmetric with respect to θ=0o and state that the best lay-
up for the plate in order to have the maximum fundamental 
frequency occurs in two cases of θ=-45o and θ=45o. Then, 
the natural frequency behavior of a [θ/-θ]s skew plates is 
depicted in Figs. 6(c-d). It is obvious that the skew angle 
(ψ=30o) causes the plate to have only one optimum solution 
for frequency maximization which is in the range of -80o ≤ 
θ ≤ -60o frequency maximization. Finally, the variations of 
the frequency of skew plates with a different lay-up, namely                                                                          
[θ/-45o/45o/90o]s, versus θ are demonstrated in Figs. 6(e-f). 
By comparing these figures with Figs. 6(a-d) associated with   
[θ/-θ]s plates, it can be concluded that the stacking sequence 

Fig. 4. Effect of temperature dependency of materials on 
vibrational behavior of [30o/-45o/45o/90o]s SMAHC skew plates 
with simply supported boundary conditions in pre-buckling 

region (a/b=1 , h/b=1/100 , e0=0.02 , ψ=30o)

Fig. 5. Variations of fundamental frequency parameter of 
simply supported [30o/-45o/45o/90o]s SMAHC skew plates versus 
temperature for different values of SMA pre-strain (a/b=1 , h/

b=1/100 , ψ=30o)
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of layers can seriously change the variations trend of the 
natural frequency of SMAHC structures. It is clear that the 
new lay-up brings about a local maximum between 20o and 
40o.

3- 6- Geometrical parameters and boundary conditions
Here, it is shown that how skew angle affects vibrational 
characteristics of SMAHC skew plates. From Fig. 7, 
the influence of skew angle on the fundamental natural 
frequency of the structure is illustrated for various SMA 
volume fractions when ΔT=100oC. It is found that, first, the 
frequency parameter increases until a local maximum point. 
Then, it decreases with the increase of skew angle up to a 
local minimum point. Finally, it increases with the increase 
of ψ. Fig. 7(a-d) show that embedding more SMA shifts the 
local maximum point to the left so that this point vanishes 
when Vs=25%. To clarify the reason for this phenomenon, 
one should simultaneously consider the effect of ψ on the 
stiffness of structure because of material properties and 
boundary conditions, thermal stresses resultants because of 
thermal environment, and recovery stress resultants induced 
by SMA fibers.
The effect of boundary conditions on the fundamental 
frequency of skew composite plates with respect to SMA 
volume fraction is tabulated in Table 5. The results reveal 

Fig. 6. Effect of stacking sequence of layers on fundamental 
frequency parameter of simply supported plates (a/b=1 , h/

b=0.01 , e0=0.02 , ΔT=100oC)
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that SMA volume fraction can decrease the role of boundary 
conditions on vibrational behavior of composite structures.  
The results presented in Table 5 show that the fundamental 
frequency parameter of CCCC skew plates without SMA 
is about 80% higher  than that of SSSS ones while this 
difference is about 65 % when the structure is embedded with 
20% SMAs. The numerical comparison also specifies that the  
volume fraction of SMAs has  more effect on the plate with 
simply supported boundaries. This is because plates with 
more clamped boundaries have a higher stiffness which is not 
affected by SMA wires as easily as the stiffness of simply 
supported ones.

4- Conclusion
This study presents  free vibration analysis of SMAHC skew 
plates. The behavior of SMA wires was modeled by Brinson 
approach and the natural frequencies of the structure were 
obtained by employing  GDQ method. The influences of 
SMA volume fraction, lamination scheme, pre-strain of SMA 
fibers, temperature, and dependency of material properties 
on the natural frequency response of SMAHC skew plates 
were examined. The numerical results represent that SMAs 
can seriously affect the vibrational behavior of composite 
structures.
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