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ABSTRACT: In this research paper, an improved theory is used for buckling analysis of sandwich truncated
conical shells with thick core and thin functionally graded material face sheets and homogeny core and
with temperature-dependent properties. Section displacements of the conical core are assumed by cubic
functions, and displacements of the functionally graded material face sheets are assumed by first-order shear
displacements theory. The linear variations of temperature are assumed in the through thick. According to a
power-law and exponential distribution the volume fractions of the constituents of the functionally graded
material face sheets are assumed to be temp-dependent by a third-order and vary continuously through the
thickness. In other words to get the strain components, the nonlinear Von-Karman method and his relation is
used. The equilibrium equations are obtained via minimum potential energy method. Analytical solution for
simply supported sandwich conical shells under axial compressive loads and thermal conditions is used by
Galerkin’s solution method. Analysing the results show that the critical dimensionless axial loads are affected
by the configurations of the constituent materials, compositional profile variations, thermal condition, semi-
vertex angle and the variation of the sandwich geometry. Numerical modeling is made by ABAQUS finite
element software. The comparisons show that the present results are in the good and better agreement with the
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results in the literature and the present finite element modelling.

Analytical solution

1- Introduction

The buckling analysis of cylindrical and conical shells subject
to types of loading is of current interest to engineers engaged
in engineering practice. It is of great technical importance
to clarify the buckling analysis behaviour of conical shells
under axial compression [1]. A number of studies have been
made of the buckling analyses of composite conical shells
under combined external pressure and axial compression
loading cases [2]. Sandwich structures find an increasing
use in aerospace, transportation, and other industries,
which require a lightweight structural component. Several
theoretical models have been developed in the recent years
to this background. In these theories assume that the height
of the core remains unchanged. Classical theories can be
found written by Plantemma [3]. Classical theories can often
accurately determine the response of the conical sandwich
structure, for example, buckling load and fundamental
vibration frequencies. Modern conical sandwich structures
are usually made of two metallic or composite face sheets
and low strength honeycomb or soft core. These properties
denoted as localized effects cannot be accurately determined
using classical theories. In other words take into account the
compressibility of the core, an improved sandwich theory has
been developed by Frostige [4]. This theory a beam, plate, or
sandwich shell model is used for the face sheets and soft core
is considered as elastic medium that has shear and vertical
stiffness only, while its longitudinal stress and strain are
neglected [5]. Improved theory has successfully been used to
analyse various problems of conical sandwich structures that
include vibration and static problems well [6]. Nowadays,

Corresponding author, E-mail: jamal mm@yahoo.com

95

there are three approaches that are presented to analyse the
mechanical behaviour of conical sandwich structures and
to predict their static and dynamic responses, That is: three-
dimensional elasticity approaches, Equivalent Single Layer
(ESL) theories and layer-wise theories [7]. There are a few
exact three-dimensional elasticity solutions for static and
dynamic analysis of the composite truncated conical sandwich
plates. Noor et al. [8] presented the three-dimensional
elasticity solution for global buckling of simply supported
conical sandwich panels with composite face sheets and soft
core. Jie and Wass [9] studied the elastic stability of a conical
sandwich panel using two-dimensional classical elasticity
theories. They determined buckling and wrinkling load of
two-dimensional cylindrical and conical sandwich panels.
Some authors analysed the buckling behaviour of cylindrical
and conical sandwich plates using ESL theories [10]. Kant
et al. [11] presented the analytical solution for buckling of
conical sandwich plates using a high-order theory. Nayak
et al. [12] studied the global buckling analysis of sandwich
shell using improve third-order equivalent single plate theory
and Finite Element Model (FEM). Bushnell et al. [13] have
carried out experimental and numerical to analyse thermal
buckling of conical sandwich shells. As well as, a layer-wise
model was presented by Dafedar et al. [ 14] for global buckling
analysis of multi core sandwich cylindrical and conical plates.
They assumed the high order polynomial functions for all
displacement components in all layers. Also, they proposed a
simplified model and calculated critical buckling loads based
on the geometric and stiffness matrix concept. The abrupt
variation in laminated composites between two neighbouring
layers can exit delamination. Functionally Graded Materials
(FGMs) composites are a particular kind of layers composite
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materials made up of two or more materials where the
mechanical properties as elasticity and thermal factor vary
continuously in one or more directions. As a consequence,
such detrimental effects as delaminating can be drive out.
Today, functionally graded materials have been used for
their excellent mechanical and well thermal properties.
FGMs materials are high performing and best thermal
resistant, capable of withstanding ultrahigh temperatures
and extremely large thermal and cold gradients present in
nuclear applications. FGMs are inhomogeneous composite
materials in microscopically. FGM was first proposed in
1984 by a group of materials scientists in Sendai Japan, as
novel materials with thermal barrier or thermal shielding
properties. Research activities have been accelerated within
Japan in the recent past [15]. Also, FGMs are usually made
from a mixture of metals and ceramics materials through a
powder metallurgy process. The advantage of using these
materials is that they are able to withstand high temperature
gradient environment while maintaining their structural
integrity properties. For example, the insulating tile for a re-
entry space vehicle can be designed such that the outside is
a refractory ceramic material, and the inside a load-carrying
structure made of a strong and tough metal [16]. Other
advantages of FGMs are reduction of stresses, an improved
residual stress, enhanced thermal, higher fracture toughness,
and reduced stress intensity factors. The composition is varied
from a ceramic surface to a metal surface with a desired
variation of the volume fraction of the two materials in
between in two layers or surfaces [17]. The first FGMs were
designed as thermal materials for aerospace application and
fusion nuclear reactors. Afterwards, FGMs were developed
for automotive industry, biomedical application, military
and general structural element in high thermal environments
conditions. Sandwich truncated conical shells are used in
various engineering backgrounds such as nuclear reactors,
vessel heads, component of missiles, spacecrafts, and other
civil, auto-mechanic industry and aerospace engineering
applications. A sandwich truncated conical shell is one of
the main components of the propulsion system structure in
rockets and aeroplanes. More researchers have presented the
stability of conical shells under external and internal loads.
Singer studied a classical theory for the buckling load of a
conical shell under uniform external and internal pressure
load [18]. Singer had extended his research to study the
effect of axial load constraint on the instability of thin conical
sandwich shells under external and internal pressure load
[19]. There are even many studies on stability problems of
the FGMs conical sandwich shells and the layered, conical
sandwich shells containing FGMs layer, There are extremely
challenging analytical problems in addition to the other
difficulties mentioned above [20]. Instability of truncated
conical sandwich shells under thermal and axial loading
was investigated by Lu et al. [21,22]. They investigated the
parameter research on truncated conical sandwich shells
for two cases of thermal distribution, temperature gradient
along the generator of the cone thick and temperature
changes circular and meridionally. Determine of the critical
temperature and its relation to geometric parameters as
thickness and reduce was presented. It was show that axial
compression load or bending was primary cause for thermal
buckling. Dumeir et al. [23] have described truncated conical
sandwich shell caps for static and dynamic or free vibration
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buckling loads using FSDT and classical lamination solution.
The problem of buckling of thin conical sandwich shells
under uniform pressure has been the subject of considerable
number researchers. Chronologically the first among them
is a paper by Niordson [24] in which the buckling problem
of conical sandwich shells subjected to uniform external and
internal lateral pressure is solved by using Rayleigh-Ritz type
variational method. Mushtari et al. [25] studied the buckling
behaviour of cylindrical and conical sandwich shells under
external and internal pressure load. Singer [26] also used the
symmetric the buckling mode under axisymmetric external
pressure. Singer [27] investigated the effect of axial constraint
on the instability of thin conical sandwich shells under external
pressure load. The effect of the four boundary condition on the
buckling behaviour of a conical sandwich shell under uniform
pressure load was studied by Thurston [28] and Baruch et
al. [29]. Recently, Kheirikhah and khalili [30] investigated
high-order theory for axial buckling analysis of sandwich
Functionally Graded (FG) plates with orthotropic soft core.
Seidi et al. [31-33] investigated an improver high-order
theory for buckling analysis of sandwich truncated conical
shell with thin FGMs face sheets and uniform soft core. The
variations of temperature are assumed constant in FGMs face
sheets and the soft core. The investigations of the buckling
response of conical shells under combined loading cases
are limited in number. Karpov [34] and A.H. Sofiye [35,36]
studied the stability of conical sandwich shell under axial and
pressure load. The best of the author’s knowledge, there are
no research in the open literature on buckling behaviour of
truncated conical sandwich shells with FGMs face sheets. By
the increased of these materials, it is important to knowledge
the buckling process behaviour of FGMs sandwich structures
subjected to different mechanical and thermal loads. The
conversation of this study is to present the buckling process
behaviour of a thin faces sandwich truncated conical panel
FGMs shell subjected to uniform thermal and axial load
in press. In this research, a high order theory and improve
theory is presented for uniform and homogeneous axial and
thermal buckling analysis of truncated conical sandwich shell
with FGMs material faces sheets and homogenous soft conic
core. FSDT is used for the face sheets and cubic function
is assumed for the transverse and in-plane displacements
of the soft and homogenous core. The linear variations of
temperature are assumed in FG face sheets and the soft core.
The Von-Karman type formulations are used to determine
strains. Continuity transverse and shear stress condition at
the interface as well as the condition of zero transverse shear
stresses on the up and down surface of the conical shell are
satisfied. Also, transverse flexibility and normal strain and
stresses on the soft conic core are considered. The equation
of boundary conditions are derived via principle of minimum
potential energy formula. Analytical solution for static
analysis of simply supported truncated conical sandwich shell
plates under axial in-plane compressive loads is presented
using Galerkin’s solution.

2- Material Properties

It is shown in Fig. 1, a sandwich truncated conical shell with
thin FGMs face sheets is considered under uniform axial
loads. The coordinate system (S, 6, z) structure is referred to
a curvilinear, where 0 and S the circumferential direction on
the reference surface and axes lie along the generator of the
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cone, respectively. And the z direction, being perpendicular
to the plane of the first two axes. In other words in Fig. 1, R,
and R, indicate reduce of the sandwich cone at its small and
big ends, respectively, then f denotes the semi-vertex angle
of the sandwich cone, and /, and /4, are the thicknesses of the
outer and inner FGMs face conical sheets, respectively. The
face sheets materials are assumed to be FGM and the soft
core is assumed as homogeny material with thickness % . The

variation radius of the cone changes between R, and R, as:

(1)

It is assumed that the FGMs are made of a mixture of a
metal and ceramic phase. Metal phase (denoted by ” m

and ceramic phase (denoted by ce’), with the material
composition varying along its thickness direction (i.e. in
the z-axis). Hence, the materials properties of FGMs C, . ,
same of young’s elasticity modulus £, , poisons’ factor
&rp density p,. . -and thermal expansion factor a can be

investigate as [35]:

R(S)=R,+S.sin(p)

FGM >

=CJy.+CJV.,

ce’ ce

2)

where C and C, are properties of the ceramic and metal,
respectively and expressed as a function of high order
temperature as:

CFGM

C=C,(C. T"+1+CT +C,T*+CT?) (3)

That 7=300K (room temp), Cﬂ, C, C,C, C, are the factor
of temperature 7' (K) remark in Kelvm and are constant for
any constituent materials [36]. ¥, and V  are the ceramic
and metal volume fraction. Also, the propertles of the FGMs
sandwich face sheets P(z/. T) hke as elasticity modulus, the
Poisson’s factor, thermal expansion factor and the power-law
function density of FGMs sandwich face sheets Eq. (4), are

introduced by [35]:

P(z,;.T)=g@ )P.T)+[1-gz )P/ (T), j =(0.i)

g(za)—[—hﬂ/z‘zﬂj ,g(z,->—(—h"/f1_”fJ

(4)

Fig. 1. A typical sandwich truncated conical shell

3- Temperature Distribution

Equations In this paper, for the thermal conditions, it is
supposed that one value of the temperature is imposed on
the outer surface of the sandwich conical shell and the other
value on the inner surface of the sandwich, The temperature
variations of the FGMs sandwich face sheets and the core are
supposed to vary in the thickness direction only by a linear
function as shown in Fig. 2 and Egs. (5) to (7) [39].
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Fig. 2. Linear change of temperature in the thickness of the
sandwich panel
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4- Mathematical Equations

4- 1- Kinematic formulations

In the proposed model for sandwich truncated conical shells,
FSDT is used for the sandwich face sheets.

u,(s,0,z,)=u,,(s,0)+z ¢/ (s.0)

v (s,0,z,)=v,,(s,0)+z ¢4, (5.,0)
w,(s,0,z,)=w,, (S,H)

.J =(0,1) ®)

where u,, v, and w, are displacements of mid surface along
the S, 6 and z direction and ¢ is rotations of the mid surface
in length of § and 6 axis. The core of conic is thicker and
softer than the sandwich face sheets. Hence the displacement
fields for the conic core are supposed as a cubic plan for the
in-plane and vertical movement components:

(8.0)z, +u,(s,0)z .7 +u,(s,0)z,’
(5,0)z, +v,(s,0)z > +v,(s5,0)z,’
w,(s,0)z, +w,(s,0)z, +w,(s,0)z,’

u,(s,0,z,)=u,(
V. (s,ﬁ,zc):vo(
w.(s,0,z, )=w,(s,0)+

5,9)
5,0)

)

where u, and v, (k=0- 1- 2- 3) are the unclear of the in-plane
movement components of the sandwich core and w, (k=0- 1-
2- 3) are the unclear of its vertical movement, respectively.
In this assumption there are twenty eight unclears: ten
movements unclears for two face sheets, twelve movement
unknowns for the conic core, and six Lagrange coefficients.

4- 2- Compatibility conditions
In the propose model, the core is perfectly limited to the face
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sheets. Thus, there are three interface movement in both face
sheet-core interface which can be get as follows:

u, (2, =h,[2)=u (z.==h[2),
v, (z,=h,[2)=v.(z. ==h.[2),
w,=w_(z,=-h[2),

u (z,=h[2)=u,(z, =—h,/2),
v.(z,=h[2)=v, (z, =—h,/2),
w.(z,=h[2)=w,

(10)

4- 3- Strain components
The nonlinear Von-Karman strain-movement formulations
for the face sheets (j=o0,i) can be determined Eq. (11) as:

. 1

J— J 2_

&y =Uy;  TZ,0] +Ewm a,AT,

;1 j i J g

&g = VojotZPop Ty sinf+z ¢ sinf+w; cosp

+

2
52" e —o;AT;
sL=-a AT, j=(od)

(11)

i o— j ; oo

Ka‘?(uoj',e"'zﬂ’s,a _VOjSlnﬂ_Zj¢€'Slnﬂ)
o1

+V0/»’s +Z/'(p€,x -|-7W‘/~JW/.!19

J — )

}/sz _¢s +Wj,s’

J _1 J J

Vo- —:W,/,a —vol/‘cosﬂ—zj(pecosﬂ +@,

The nonlinear Von-Karman strain-movement formulation for
the sandwich core can be defined as:

15%¢

1
c _ 2 3 2
E =y, tu tu, z." tu,y z, +5W 0s & AT,

L + B P (g +uz, tuyz ) +ugz,)sin B
Epp = - Vo‘g szc vZ,SzL VS,HZL Uuytuz, +u,z, Uz . Jsm

1
2 3 2
‘*‘(Wo*'lec*'szc WLz, )cosﬁ}+?ww -a,AT,

c

£ =w +2w,z_ +3wz . —a,AT.,

¢ _ 2
& =w +2w,z +3wz. —a AT,

- (12)
2 3
L L[ Woo TWipZ FW o2 T F W2, R
Vo =— 5 R v+ 2,z +3viz,
r 7(v0+vlzL +v,z, 4V z, )cosﬂ

¢ _
Vso =

2 3
1[Uop TUpZ, Tl pZ, " FUs,Z,
B

2 3) s
—(vo vz v,z vz, )smﬂ+w 0sW 0.0

W, vz v,z gz

1s“¢c 25%¢ 3s5%c

4- 4- The stress equations
For definition of stress resultants for each FGMs face sheet
(j=o0,1), main equations are as follows:
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J (0)
Nss All AIZ O gssj
J o\ (0)
Nopr=14n Ayp 0 [{&y,
J (0)
NSH 0 0 A66 gsﬁj
(1) Tj
Bll B12 O gssj Nss
O] 7j
+| By, By 0 |5€w 11N
Q)]
0 0 B66 Es) 0
J (0)
Mss Bll BIZ 0 gssj
J {— (0)
My =B, By 0 |1&
J (0)
M.&'O 0 0 B66 gsﬂj
] 7j
Dll D12 O gss]' Mss
O] Tj
+ D12 Dzz 0 500,' - Moo
O]
0 0 D(,e Es9j 0
2 2
m_7 o 7 0) S
Qaj _63557&]‘ +ED557’&,‘ > Jj=(,i)

where strain components are defined as:

(0)
ssj

(0)
g&&j
(0)
s0j

@
ssj

1)
Epo;
(1)
s0j

—

(0)

)/szj _
(0)

yﬁzj

1
uoj’s +5Wj’5

1 . 1 2
= ;(voj)(9 +u,, sin f+w cosﬂ)+ﬁwm

1 . 1
:(uoj)g Vo, sm,8)+v0j’x +:wjyswj‘9

J
S,

=1 H{dho+dsinp)

l(—gzﬁg" sin f+ ¢3jﬂ ) + ¢g‘,§
r
W +¢/

- %(wj’,,7 vy, cosﬂ)+¢g

0
7| _ |
75 ;(—¢; cos )

Also, NV , N7 , M 7 and M, are the thermal resultants

and A4 j

k2

S,
J

(13)

(14)

Bk/ and DJ, (k,1=1,2,6) are the stiffness matrix

components in which for the outer and the inner sandwich
face sheets are as follows:

2 E(z,,T)
NIU=NI = | L5050 7 g (2. ,T)AT dz ., j =(0,i
55 60 Jl:jl_Uj(Zj7Tj) ;2 T)ATdz = (0,1)
T2
By
. 2z FE.(z,,T)
MU =Ml = [ L2200 o (2 T)AT dz,,j =(0,i) (15)
58 00 !/ 1=0,(z,.T,) (2, T)ATdz ) = (0,1)
2
A’ Al B 1
Bljl 32/2 j' Ej (Zj ’Tj ) d:
n(=\1P2 (= )% (9
Dl |ph| 1-(9,(=,.1,)) 2}
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Aljz hzr g (Zj:T/')XEf (Zj’T/») 1

B/, :I ! z . pdz .
DL 1_(3I(ZJ’TJ))2 ijz '

2

WhereE(z T) 9(2 T) anda(z T) ,j=(0,1) aretheyoungs
modulus ‘the Poisson’s factor and the thermal expansion
factor of the FGMs sandwich face sheets, and demonstrate
by power-law function of FGMs. And, twenty three stress
resultants of the core are obtained as:

2
c c

{Qsz 4 Q]sz 7MQ2_§Z > Q3sz J‘

e

2

sz c

lz Zc Z 3)1’ch
lz

he.
2
c c C
{Q@z’ Qle’MQ292’ Q39z I Zc »Z )ngdz
h
2

z1?

{RMMC

b=

2 c
(l,zc,zu )Gzzdzc

S

(16)

h,
{05 M G0 MG, 0. M ) = j}:(lz 20z )z,
. ;
{REM M M (Y = j (12,.2..2,%)o%dz,
T
.
(R M. MG, M} = j(lz 2,02, ) oz,

o |

4- 5- Governing relationship

The governing relation for the sandwich face sheets and
the soft core are obtained from the principle of minimum
potential energy theory:
U +&V =0 7
That U is the strain energy parameter; ' is total potential
energy and J denotes the change operator.

The value of V' is equals to:

L2

o = —J J (n’Su,, +n'du,, +ndu, )rdbds (18)
00

where u, , u, , u, are the movements of middle plane of
the outer and inner sandwich face sheets and core in the
long direction, respectively. n° and n' are the in-plane
external force of the outer and inner sandwich face sheets,
respectively. The first changing of the strain energy can be
determined in terms of all stresses and strains of the face
sheets and the soft core. The adaptability conditions at the
face sheet-core interfaces, Eq. (10), are compel through the
use of six Lagrange coefficient. Hence, the first change of the
internal potential energy is:
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oU = I 0 O8] + Oy Oy +Toy Oy +To. OFs. + T, OV, )dV
+J o' Sl + o, del, v, Oy, + Tl S+l Oy, )dV

+ I (r Oy., +7,, Oy, +0. Oc. +0, O, +o‘0{,é‘gw]+ryﬂbyﬂ)dV

[T e b 21t == D) 1)
v, (z,=-h,/2))
19
+ A, (W, -w, (2. ==h [2))+ 4, (. (z. =h.[2)-u, (z, ==}, [2)) (19)
o v (2o =h [2) v, (2, ==h [2))+ A, (w, (2. =, [2)-w,) ] rd Ods

=hy [2)-u,(z, ==h [2))+ 2, (v, (z, =h,[2)

( ,:—h J2))+ 2, (w, (2. =h [2)-u, (z, ==h, [2))
mﬁ (v zo=h [2)-v, (2, == I [2)+ A (w, (2, =k [2)-w,) |rd Ods

where ¢/ and ¢,/ (j=o0,i) are the in-plane stresses ¢,/ and ¢ /
and (j= o z) are the linear in-plane normal strains of the outer
and inner sandwich face sheets; o ©, 0, , ¢, and ¢ ¢ are the
in-plane normal stresses and strains of the core respectively;
t/and y / (j=o,ic) are the in-plane shear stresses and strains
in the sandwich face sheets and soft core; o_¢ and ¢_¢ are the
normal stress and normal strain in the perpendicular “direction
of the core; 7 ¢ and y ¢ are the perpendicular shear stress
and perpend1cular shear strain in the core; V, V. and V.
are the volume of outer and inner face sheets and the core,
respectively; 4 /11 and 4_ (j=o,i) are six Lagrange factors
for stability condltlons at tﬁe outer and inner sandwich face
sheet-core interfaces. By using the Egs. (17) to (19) and
after some algebraic operate, the twenty eight equations of
equilibrium are obtained as follows:

For the outer FG face sheet:

NG +(NS =Ny, )sin B+ N, —rd, +m! =0
N oo+ SHS+2N;’951n,8+Q(°)c0sﬂ—r/150—
. h,
P (M =M sin My, =0 —rA, Ze=0 (20)
o (0) 1) hn
Mgy o +1M Sy +2M Jysin B—rQ,) +Q,,) cos B—r1A,, 5= =0
Five equations for the inner FG face sheet:
”N.i\-,x +(N.::\- _Néf))Sinﬂ+N.§9,9 +ri,; +m\' =0
N;M + rN;(,,S +2N/, sin,B+Q;?) cosf+ri, =0
. . L . h
P+ (M =M Jsin My =0 =14, 7‘= @
: h
M gy o+rM )y +2M [, sin f—rQ)) +04) cos f—r =0
Twelve equations for the core:
R, +(RE =Ry )sin B+Q%, , +7 A, —ri, =0
Q. +rM; + (M M”,)s1nﬂ+MQM,} -7, % ra, h—z':O
M G 1M G, + (MG MG )sin B+ M., -0 (22)
h 3
“3M gy, M (M =M )sin B+ MGy, , — A ==0

Q;z cosﬂ+R;,y +rQ.:0,: +2Q:(/ Sinﬂ"'rﬂ% _rlm =0
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Mém: cos f-rQ, + My, +rM£)l\9.s
h. h
H2M o Sin =12y, =12y 2‘ =0

.
Mgzaz Cosﬂfersz My, +M 5,
h 2

+2M —0
M 3. COS f=3rM 5, +M€3’€ Mlee,v
LM G, sin f—r Ay, % —y %3 o
MG, AMG, sin MG, ,—

c c hc h[‘
R =My cosf-ri, 7—;’/11, 5"

¢ ¢
M g+ MGy sinS+M g, ,—2rM 7 —
h’ h2
.
M02
™™ s, + Mg, s1nﬁ+MQ35,zﬂf3rM:27

) h’ h’
Mg, cosff—ri, —~——-ri, <=
a3 ﬂ Z0 8 zi 8

Compatibility conditions corresponding to perfect bonding:

[ 0 hL' c2 hc3
Uy, +—=¢ —uo+ul?—u2 , +u, < =0
) o h hCZ hc3
Vo, =285 —v0+v1——v27+v3?—0
h? h’
W, —w,+w, 2—w2 2 +w, é =0 ”
hCZ hc3 h‘- ; ( )
uy+u, —<+u, 4 +u, u,, +7Q =0
h 2 3 h )
VotV =4y, ——4v, v, +?" )y =0
2 3
Wotw, —=+w, ; +w,——-w, =0
where N(w)) , N(w ) and N(w ) are defined as:
Nw,)=Ni(mw,, +w,, sinp)
N(wl.):]\7;s (rw W, sinﬂ) (24)
N (wc):l?f (rw(m W, sinﬁ)
and N" N’ and R are the total external load, N, that are

{) b
exerted to the outer face sheet, inner face sheet and the soft

core along S direction, respectively.
N2 +N! +R‘=-N, (25)
It assumed homogeny state of strain for the face sheets and
the core. So that by a little simplification we can write:
_ R

hL‘EC

Ny _ Ny
hnE_n hlETI

(26)

where E_ is the young modulus of the core; and 1::0 and E[ are
the equilibrium young moduli in the outer and inner sandwich
face sheet, respectively, that are obtained as:

100

h, /2 hi )2
.[ E, (zu)dzo I E, (z,.)dzi
F oo bl F b (27)

0 i

Also, by used of Egs. (25) and (26), the external in-plane bar
exerted to the face sheets and the core along S direction can
be determined as:

(28)

R =——=
hE, +hE, +hE,

4- 6- Analytical solution and discussion

It assumed the outer and the inner face sheets are simply
supported and the perpendicular movements through the
depth of the core at the edges of the sandwich truncated
conical shell are prevented. Thus, the face sheets are supposed
to be FG and the core is supposed to be isotropic. Then, a
Galerkin solution theory with twenty eight trigonometric
shape functions, which satisfies the boundary conditions, is
obtained. The shape functions can be calculated as:

u,; =C, cos(%sjcos(n@) , j=0,i
vy, =C, sin(%s]sin(n@) , j=0,i
=C, . sm(%s]cos(n&) , J =0,i

=C,, cos[%s jcos(né’)

¢ , j=0,i
29
. mim . ( )
r =C sin TS s1n(no9) , K =0,1,2,3
w, =C,, sin(%sjcos(n@) , K =0,1,2,3

A; =C,y cos(%sjcos(ﬂﬁ) , j=o0,i
2g; =C 9, sin(%sjsin(n@) , j=0,i

where C Cv, CW CW, CwCrpC o C;Y, C,and C, _
are the unclear constants factor of the shape functlons Hence
(m) and (n) are the wave numbers. After substitution of Eq.
(29) into Egs. (20) to (23), due with the stress resultants of
the FG face sheets, and the high-order stress resultants of the

core, the problem can be investigate in matrix form as:

[L]ic}={F}

That vector {C} is consist of twenty eight unclear constants
and components of matrix [L] and vector {F} are not
presented here for the sake of brevity. Eq. (30) is calculated
for {C} by using MATLAB programming software and the

(30)
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twenty eight unclear constants are determined.

5- Mathematical Formulation

5- 1- Numerical solution and discussion

In this section, to verify the presented results for buckling of
sandwich conical shell with FGMs face sheets, in matching
software outcomes with theoretical results obtained by
ABAQUS 6.9, see Fig. 3. It is used C3DS8T elements. The
reliability and converge of FEM is shown in Fig. 4. The
buckling results of the sandwich truncated conical shells
with FGMs material face sheets are obtained for a sandwich
conical model shell with geometrical shown in Table 1, but, for
ceramic and metal structure. Typel: the soft core is complete
stainless steel with (3=0.3 and £=210 (GPa), to top and the
bottom face sheets are silicon/ nitride/Nickel. Type 2: the
soft core is complete titanium and the FGMs face sheets are
Zirconia/Titanium material. In the two above cases, the outer
surfaces of the FGMs face sheets are supposed to be ceramic
rich (Si3N4 or ZrO2) and the FGMs face sheets in the face
sheet-core interfaces are supposed to be complete metal (Ni
or Ti—-6A1-4V). The material satisfied C in the FGMs face
sheets can be investigated as a function of thermal as Eq. (3).
Temperature dependent silicified of materials of Si3N4, Ni,
Zr02 and Ti-6Al-4V described by five parameters for third-
order function of temperature that is shown by Eq. (3), [38].

Table 1. Dimensions of the specimens [37]
h &h, R,/H L/R, cosf
1.5mm 300 2

h

c

15mm

15

H: Total thickness of the sandwich

Fig. 3. FE meshing for the proposed research used for
verification

39
38.5

ws |/

37

Critical buckling load

0 5000 10000

Number of elements

15000

Fig. 4. Converge of FE method result
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Fig. 5. FEM model of meshing
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Fig. 6. The amount of valence static axial load with other
thermal terms for type 1 and 2.

Tables 2 and 3 show the critical dimensionless uniform
axial loads for Types 1 and 2 symmetric sandwich truncate
conical shells. A comparison is carried out in Tables 2 and
3 among the results of the proposed research and FEM of
ABAQUS software for various thermal conditions and also
for three amount of power-law theory index, N. The critical
dimensionless uniform axial load is obtained as:
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Table 2. The amount of critical static axial force dimensionless for type 1 sandwich conical shells with distinct thermal terms and: N.

N_x10°
T,=300K T,=500K T,=700K
T,=300K T,=300K T,=300K
Present 1.757 1.633 1.537
N=1 ABAQUS 1.696 1.565 1.444
Discrepancy 3.6% 4.16% 6.4%
Present 1.695 1.562 1.469
N=2 ABAQUS 1.611 1.460 1.359
Discrepancy 52% 7.0% 8.1%
Present 1.754 1.629 1.525
N=3 ABAQUS 1.793 1.556 1.441
Discrepancy 2.2% 4.7% 5.8%

Table 3. The amount of valence dimensionless uniform static axial force for second type sandwich conical shells with other thermal

term and V.
N_x10°
T=300K T,=500K T=700K
T,=300K T,=300K T,=300K
Present 1.326 1.227 1.164
N=1 ABAQUS 1.235 1.156 1.086
Discrepancy 6.8% 6.1% 7.2%
Present 1.278 1.180 1.117
N=2 ABAQUS 1.230 1.119 1.041
Discrepancy 3.9% 5.4% 7.3%
Present 1.323 1.221 1.157
N=3 ABAQUS 1.279 1.159 1.088
Discrepancy 3.4% 5.3% 6.3%
and 2. In general, Tables 4 to 8 indicate that with change the
vV = Ny 31) virtues distribution of the FGMs face sheets from linear state
“ E,H to quadratic, and then from quadratic to cubic repartition, the

where E  is the elasticity modulus of the homogeneous
ceramic; ‘and (H) is the total width of the sandwich. In Table
3 shown that the minimum and max discrepancies in percent
among the propose theory and FEM method results for type
1 sandwich conical shells are 1.9 % and 8.1%, respectively.
Also, the minimum and maximum discrepancies in percent
among this theory and FEM software results for type 2
sandwich conical shells, shown in Table 4, are 0.7% and
7.3%, respectively. It is shown that illustrated that the FEM
results of ABAQUS software and the results of this study are
in well matching and agreement with each other.

5- 2- Analytical resultant

In this paragraph, the numerical solution results are calculated
for type 1and 2 sandwich truncated conical shells with FG face
sheets introduced in previous section. Critical dimensionless
uniform static axial bar is calculated in Tables 5 to 9 for
different thermal conditions, different core thickness-to-
face sheet thickness ratio 4 /A, , different blgger radius-to-
sandwich thickness ratio R,/H, dlfferent semi-vertex angle
p, and other word for three virtues repartition of the FGMs
face sheets and for two kind of sandwich conic shells, type 1
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critical dimensionless axial bar 1\7” is reduction and increased,
respectively. Mutation of the critical dimensionless uniform
static axial load N with three compositional profiles,
N=1,2,3, three semi- “vertex angles, £=30,45,60, and three
different thermal conditions are presented in Tables 5 and 6,
for type 1 and 2 sandwich conical shells, respectively. Tables
4 and 5 indicate with increasing the semi-vertex f angle, the
critical dimensionless homogeny static axial bar is decreased.
For example, by increasing the semi-vertex angle from 30
to 60, the critical dimensionless static axial loads in Tables 5
and 6 are decreased between 34.3% and 42.1%.

In Tables 6 and 7, the valence of the acute dimensionless
uniform static axial loads are shown for type 1 and 2
sandwich truncated conical shells, respectively, with three
core thickness-to-face sheet thickness ratio, 4 / # =5,10,15,
three compositional profiles, N=1,2,3, and three different
thermal conditions. Tables 7 and 8 show, by grow thing the
core thickness-to-face sheet width ratio from 5 to 10, the
valence dimensionless static axial bars for type 1 sandwich
shells are reduce between 2.6% and 10.2%, and for type
2 sandwich conical shells are decreased between 1.2%
and 4.8%. Also, Tables 7 and 8 indicate that by adding the
core thickness-to-face sheet width ratio from 10 to 15, the
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critical dimensionless axial loads for type 1 sandwich shells

are decreased between 2.5% and 6.7%, and for second type
sandwich shells are decreased between 0.7% and 3.4%.

Fig. 8. The valence for type 1 sandwich conical with different
R/H, N and different thermal term

Table 4. The critical uniform static axial load dimensionless for type 1 sandwich conical shells with other #, NV and different thermal
term. (R,/H=400 , h /h =10 , (R,/L)sinf=4 , T,=300K)

N_x10°
T (K) N=1 N=2 N=3
£=30 p=45 $=60 £=30 p=45 $=60 $=30 $=45 £=60
300 0.909 0.802 0.597 0.916 0.770 0.557 0.946 0.795 0.577
500 0.845 0.723 0.534 0.844 0.711 0.507 0.878 0.735 0.535
700 0.795 0.678 0.496 0.792 0.661 0.481 0.822 0.685 0.483

Table S. The valence dimensionless axial load for second type sandwich conical shells with other B, N and different thermal conditions.
(R,/H=400 , h /h =10 , (R,/L)sinf=4 , T,=300K)

N_x10°
T,(K) N=1 N=2 N=3

p=30 p=45 =60 =30 p=45 =60 =30 p=45 =60
300 0.735 0.622 0.438 0.690 0.581 0.434 0.714 0.599 0.434
500 0.680 0.569 0.402 0.637 0.558 0.395 0.659 0.551 0.399
700 0.646 0.541 0.374 0.602 0.507 0.363 0.624 0.523 0.367

Table 6. The critical dimensionless uniform static load for type 1 sandwich shells with other /2, /h_, N and other thermal term.
(R,/H=300 , p=15°, (L/R )cosfi=2 , T,=300K)

N_x10°
T(K) h/h =5 h./h =10 h/h =15
N=1 N=2 N=3 N=1 N=2 N=3 N=1 N=2 N=3
300 0.735 0.622 0.438 0.690 0.581 0.434 0.714 0.599 0.434
500 0.680 0.569 0.402 0.637 0.558 0.395 0.659 0.551 0.399
700 0.646 0.541 0.374 0.602 0.507 0.363 0.624 0.523 0.367

Table 7. The valence dimensionless uniform axial load for second type sandwich shells with other 2 /h_ , N and other thermal

conditions. (R,/H=300 , f=15°, (L/R )cosfi=2 , T,=300K)

N_x10°
T(K) h/h =5 h_/h,=10 h/h =15
N=1 N=2 N= =1 N=2 N= =1 N= N=
300 1.365 1.293 1.362 1.326 1.278 1.323 1.287 1.263 1.286
500 1.289 1.218 1.283 1.239 1.194 1.223 1.217 1.174 1.214
700 1.223 1.158 1.227 1.164 1.129 1.171 1.133 1.091 1.133
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Table 8. The valence dimensionless static load (N”XI(P) for type 1 and 2 sandwich shells with distinct R,/H, N and different thermal
conditions. ($:45°, h /h =10, (R,/L)sinf=4 , T,=300K )

Type 1 Type 2
N R,/H
T,=300K T,=500K T,=700K T,=300K T,=500K T,=700K
200 1.586 1.495 1.421 1.197 1.113 1.079
1 400 0.802 0.738 0.686 0.622 0.572 0.551
600 0.532 0.492 0.464 0.401 0.373 0.352
200 1.523 1.444 1.342 1.154 1.056 0.971
2 400 0.770 0.724 0.679 0.581 0.536 0.498
600 0.513 0.478 0.449 0.386 0.356 0.326
200 1.583 1.494 1.344 1.194 1.099 1.054
3 400 0.795 0.755 0.695 0.599 0.546 0.516
600 0.529 0.493 0.468 0.400 0.372 0.358

In Table 8, changes of values of valence dimensionless static
load for type 1 and 2 sandwich conical with three bigger
radius-to-sandwich thickness ratio, R,/H=200,400,600, three
compositional profiles, N=1,2,3, and three different thermal
conditions are presented. In type 1 and 2 sandwich shells,
when R,/H is increased from 200 to 400, the amount of the
critical dimensionless uniform axial loads are reduce about
50%, and by increasing R,/H from 400 to 600, the amount
of the critical dimensionless static uniform loads are reduce
about 33.5% .

Tables 4 to 8 indicate with increasing the temperature of the
internal surface of the sandwich shell, 7', from 300K to 700K
, the critical dimensionless axial loads are decreased between
10.4% and 19.8% for type 1 sandwich conical shells, and the
critical dimensionless axial loads are decreased between 10%
and 16.3% for type 2 sandwich conical shells. Also, Tables
4 to 8 show the valence dimensionless uniform axial loads
calculated for type 1 sandwich conical shells are generally
bigger than the critical dimensionless axial loads calculated
for second type sandwich conical shells.

6- Conclusions

The buckling of sandwich conical shells with FG face

sheets under uniform axial pressure load is studied. The

material virtues of FGMs face sheets are varied by power-
law repartition along the width. It shown that the values of
the critical dimensionless uniform axial load are saddened
by the formation of the constituent materials, hybrid profile
variations, semi-vertex beta angle, thermal condition and the
change of the sandwich shape. Collation the results of this
research with FEM results validates the propose analysis.

Based on the results obtained, the following outcomes can

be drawn:

* By changing the distribution property of FG face sheets
from linear to quadratic, and then from quadratic to cubic
distribution, the critical dimensionless axial is decreased
and increased, respectively.

* By increasing the semi-vertex angle f, the valence
dimensionless static uniform axial load is decreased.

e With growing the core thickness-to-face sheet width
ratio, the valence dimensionless static axial bars for type
1 and 2 sandwich truncated conical shells are reduced.

*  When bigger radius-to-sandwich thickness ratio, R, /H,
is grouted, the values of the valence dimensionless static
uniform axial forces are reduced.
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* The valence dimensionless forces calculated for type
1 sandwich conical shells are bigger than the critical
dimensionless uniform axial bars calculated for second
type sandwich conical shells.

»  with additional the temperature of the internal surface of
the sandwich shell, 7, from 300K to 700K , the critical
dimensionless axial bars are decreased between 10.4%
and 19.8% for type 1 sandwich conical shells, and are
decreased between 10% and 16.3% for type 2 sandwich
conical shells.

*  For future work we suggest do this work in experimental
and mention the effect of nonlinear thermal.
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