A Geometric Modeling Approach to Find the Best Microstructure for Infiltrated SOFC Electrodes

Document Type : Research Article

Authors

1 Mechanical Engineering Department, Babol Noshirvani University of Technology, Babol, Iran

2 School of Mechanical Engineering, College of Engineering, University of Tehran, Tehran, Iran

3 School of Metallurgy and Materials Engineering, College of Engineering, University of Tehran, Iran

Abstract

In this study, a novel design paradigm is presented to obtain some geometry-related electrochemical and physical properties of an infiltrated SOFC electrode. A range of digitally realized microstructures with different backbone geometric properties and virtual electro-catalyst particle loadings under various deposition conditions are generated. Triple Phase Boundary (TPB), the active surface density of particles and gas transport factor are evaluated in those realized models based on selected infiltration strategy. Based on this database, a neural network is trained to relate the desired range of input geometric parameters to a property hull. The effect of porosity and geometric anisotropy in backbones in addition to the loading, distribution and aggregation behavior of particles is systematically investigated on those performance indicators. The results indicated that microstructures with very high amount of TPB and contact surface density of particle have a relatively low gas diffusion factor, meanwhile increasing these parameters does not involve  a sensible contradiction. Also, by adding particles, the TPB density variation is changed as a function of backbone porosity and the average shape of aggregated particles. A direct search into the microstructure and property hull is applied to find the best parameters in modeling approach aiming the maximum effective geometric properties. Finally, a genetic algorithm is employed to detect appropriate geometric factors getting the maximum acquirable performance in infiltrated SOFC electrodes.

Highlights

[1] N.Q. Minh, T. Takahashi, Science and technology of ceramic fuel cells, Elsevier, 1995.

[2] B.C. Steele, A. Heinzel, Materials for fuel-cell technologies, Nature, 414(6861) (2001) 345-352.

[3] N.Q. Minh, Ceramic fuel cells, Journal of the American Ceramic Society, 76(3) (1993) 563-588.

[4] Y. Zhang, Q. Sun, C. Xia, M. Ni, Geometric properties of nanostructured solid oxide fuel cell electrodes, Journal of The Electrochemical Society, 160(3) (2013) F278-F289.

[5] M. Ni, T.S. Zhao, Solid oxide fuel cells, Royal Society of Chemistry, 2013.

[6] M. Kishimoto, M. Lomberg, E. Ruiz-Trejo, N.P. Brandon, Enhanced triple-phase boundary density in infiltrated electrodes for solid oxide fuel cells demonstrated by high-resolution tomography, Journal of Power Sources, 266 (2014) 291-295.

[7] P. Shearing, D. Brett, N. Brandon, Towards intelligent engineering of SOFC electrodes: a review of advanced microstructural characterisation techniques, International Materials Reviews, 55(6) (2010) 347-363.

[8] H.A. Hamedani, M. Baniassadi, A. Sheidaei, F. Pourboghrat, Y. Rémond, M. Khaleel, H. Garmestani, Three-dimensional reconstruction and microstructure modeling of porosity-graded cathode using focused ion beam and homogenization techniques, Fuel Cells, 14(1) (2014) 91-95.

[9] V.H. Schmidt, C.-L. Tsai, Anode-pore tortuosity in solid oxide fuel cells found from gas and current flow rates, Journal of Power Sources, 180(1) (2008) 253-264.

[10] D.H. Jeon, J.H. Nam, C.-J. Kim, Microstructural optimization of anode-supported solid oxide fuel cells by a comprehensive microscale model, Journal of The Electrochemical Society, 153(2) (2006) A406-A417.

[11] S.P. Jiang, Nanoscale and nano-structured electrodes of solid oxide fuel cells by infiltration: advances and challenges, International journal of hydrogen energy, 37(1) (2012) 449-470.

[12] J.M. Vohs, R.J. Gorte, High‐Performance SOFC Cathodes Prepared by Infiltration, Advanced Materials, 21(9) (2009) 943-956.

[13] Y. Zhang, M. Ni, C. Xia, Microstructural insights into dual-phase infiltrated solid oxide fuel cell electrodes, Journal of The Electrochemical Society, 160(8) (2013) F834-F839.

[14] A. Bertei, J.G. Pharoah, D.A. Gawel, C. Nicolella, Microstructural Modeling and Effective Properties of Infiltrated SOFC Electrodes, ECS Transactions, 57(1) (2013) 2527-2536.

[15] M.J. Synodis, C.L. Porter, N.M. Vo, A.J. Reszka, M.D. Gross, R.C. Snyder, A Model to Predict Percolation Threshold and Effective Conductivity of Infiltrated Electrodes for Solid Oxide Fuel Cells, Journal of The Electrochemical Society, 160(11) (2013) F1216-F1224.

[16] E.F. Hardjo, D.S. Monder, K. Karan, An Effective Property Model for Infiltrated Electrodes in Solid Oxide Fuel Cells, Journal of The Electrochemical Society, 161(1) (2014) F83-F93.

[17] A.J. Reszka, R.C. Snyder, M.D. Gross, Insights into the Design of SOFC Infiltrated Electrodes with Optimized Active TPB Density via Mechanistic Modeling, Journal of The Electrochemical Society, 161(12) (2014) F1176-F1183.

[18] M. Kishimoto, M. Lomberg, E. Ruiz-Trejo, N.P. Brandon, Towards the Microstructural Optimization of SOFC Electrodes Using Nano Particle Infiltration, ECS Transactions, 64(2) (2014) 93-102.

[19] S. Jemeı, D. Hissel, M.-C. Péra, J.-M. Kauffmann, On-board fuel cell power supply modeling on the basis of neural network methodology, Journal of Power Sources, 124(2) (2003) 479-486.

[20] S. Ou, L.E. Achenie, A hybrid neural network model for PEM fuel cells, Journal of Power Sources, 140(2) (2005) 319-330.

[21] M.T. Hagan, H.B. Demuth, M.H. Beale, O. De Jesús, Neural network design, PWS publishing company Boston, 1996.

[22] D. Marra, M. Sorrentino, C. Pianese, B. Iwanschitz, A neural network estimator of Solid Oxide Fuel Cell performance for on-field diagnostics and prognostics applications, Journal of Power Sources, 241 (2013) 320- 329.

[23] S. Bozorgmehri, M. Hamedi, Modeling and Optimization of Anode‐Supported Solid Oxide Fuel Cells on Cell Parameters via Artificial Neural Network and Genetic Algorithm, Fuel Cells, 12(1) (2012) 11-23.

[24] A. Saengrung, A. Abtahi, A. Zilouchian, Neural network model for a commercial PEM fuel cell system, Journal of Power Sources, 172(2) (2007) 749-759.

[25] M. Baniassadi, H. Garmestani, D. Li, S. Ahzi, M. Khaleel, X. Sun, Three-phase solid oxide fuel cell anode microstructure realization using two-point correlation functions, Acta materialia, 59(1) (2011) 30-43.

[26] B. Rüger, J. Joos, A. Weber, T. Carraro, E. Ivers- Tiffée, 3D electrode microstructure reconstruction and modelling, ECS Transactions, 25(2) (2009) 1211-1220.

[27] J. Joos, B. Rüger, T. Carraro, A. Weber, E. Ivers- Tiffée, Electrode Reconstruction by FIB/SEM and Microstructure Modeling, ECS Transactions, 28(11) (2010) 81-91.

[28] Q. Cai, C.S. Adjiman, N.P. Brandon, Modelling the 3D microstructure and performance of solid oxide fuel cell electrodes: computational parameters, Electrochimica Acta, 56(16) (2011) 5804-5814.

[29] C.W. Tanner, K.Z. Fung, A.V. Virkar, The effect of porous composite electrode structure on solid oxide fuel cell performance I. Theoretical analysis, Journal of The Electrochemical Society, 144(1) (1997) 21-30.

[30] Z. Jiang, C. Xia, F. Chen, Nano-structured composite cathodes for intermediate-temperature solid oxide fuel cells via an infiltration/impregnation technique, Electrochimica Acta, 55(11) (2010) 3595-3605.

[31] S.B. Adler, J. Lane, B. Steele, Electrode kinetics of porous mixed‐conducting oxygen electrodes, Journal of the Electrochemical Society, 143(11) (1996) 3554-3564.

[32] A. Babaei, S.P. Jiang, J. Li, Electrocatalytic promotion of palladium nanoparticles on hydrogen oxidation on Ni/GDC anodes of SOFCs via spillover, Journal of the Electrochemical Society, 156(9) (2009) B1022-B1029.

[33] V.M. Janardhanan, V. Heuveline, O. Deutschmann, Three-phase boundary length in solid-oxide fuel cells: A mathematical model, Journal of Power Sources, 178(1) (2008) 368-372.

[34] J.S. Cronin, Three-Dimensional Structure Combined with Electrochemical Performance Analysis for Solid Oxide Fuel Cell Electrodes, NORTHWEStERN UNIVERSITY, 2012.

[35] N. Shikazono, D. Kanno, K. Matsuzaki, H. Teshima, S. Sumino, N. Kasagi, Numerical assessment of SOFC anode polarization based on three-dimensional model microstructure reconstructed from FIB-SEM images, Journal of The Electrochemical Society, 157(5) (2010) B665-B672.

[36] M. Kishimoto, M. Lomberg, E. Ruiz-Trejo, N.P. Brandon, Towards the Design-Led Optimization of Solid Oxide Fuel Cell Electrodes, in: ECS Conference on Electrochemical Energy Conversion & Storage with SOFC-XIV (July 26-31, 2015), Ecs, 2015.

[37] W. He, W. Lv, J. Dickerson, Gas transport in solid oxide fuel cells, Springer, 2014.

[38] F. Zhao, T.J. Armstrong, A.V. Virkar, Measurement of O 2 N 2 Effective Diffusivity in Porous Media at High Temperatures Using an Electrochemical Cell, Journal of the Electrochemical Society, 150(3) (2003) A249-A256.

[39] D.T. Fullwood, S.R. Niezgoda, B.L. Adams, S.R. Kalidindi, Microstructure sensitive design for performance optimization, Progress in Materials Science, 55(6) (2010) 477-562.

[40] B.L. Adams, S. Kalidindi, D.T. Fullwood, Microstructure-sensitive design for performance optimization, Butterworth-Heinemann, 2013.

[41] M. Kishimoto, H. Iwai, M. Saito, H. Yoshida, Quantitative evaluation of solid oxide fuel cell porous anode microstructure based on focused ion beam and scanning electron microscope technique and prediction of anode overpotentials, Journal of Power Sources, 196(10) (2011) 4555-4563.

[42] A. Bertei, B. Nucci, C. Nicolella, Microstructural modeling for prediction of transport properties and electrochemical performance in SOFC composite electrodes, Chemical Engineering Science, 101 (2013) 175-190.

[43] M. Kishimoto, M. Lomberg, E. Ruiz-Trejo, N.P. Brandon, Numerical modeling of nickel-infiltrated gadolinium-doped ceria electrodes reconstructed with focused ion beam tomography, Electrochimica Acta, 190 (2016) 178-185.

[44] W. He, W. Lu, J.H. Dickerson, Gas Transport in Solid Oxide Fuel Cells, Springer, 2014.

Keywords


[1] N.Q. Minh, T. Takahashi, Science and technology of ceramic fuel cells, Elsevier, 1995.
[2] B.C. Steele, A. Heinzel, Materials for fuel-cell technologies, Nature, 414(6861) (2001) 345-352.
[3] N.Q. Minh, Ceramic fuel cells, Journal of the American Ceramic Society, 76(3) (1993) 563-588.
[4] Y. Zhang, Q. Sun, C. Xia, M. Ni, Geometric properties of nanostructured solid oxide fuel cell electrodes, Journal of The Electrochemical Society, 160(3) (2013) F278-F289.
[5] M. Ni, T.S. Zhao, Solid oxide fuel cells, Royal Society of Chemistry, 2013.
[6] M. Kishimoto, M. Lomberg, E. Ruiz-Trejo, N.P. Brandon, Enhanced triple-phase boundary density in infiltrated electrodes for solid oxide fuel cells demonstrated by high-resolution tomography, Journal of Power Sources, 266 (2014) 291-295.
[7] P. Shearing, D. Brett, N. Brandon, Towards intelligent engineering of SOFC electrodes: a review of advanced microstructural characterisation techniques, International Materials Reviews, 55(6) (2010) 347-363.
[8] H.A. Hamedani, M. Baniassadi, A. Sheidaei, F. Pourboghrat, Y. Rémond, M. Khaleel, H. Garmestani, Three-dimensional reconstruction and microstructure modeling of porosity-graded cathode using focused ion beam and homogenization techniques, Fuel Cells, 14(1) (2014) 91-95.
[9] V.H. Schmidt, C.-L. Tsai, Anode-pore tortuosity in solid oxide fuel cells found from gas and current flow rates, Journal of Power Sources, 180(1) (2008) 253-264.
[10] D.H. Jeon, J.H. Nam, C.-J. Kim, Microstructural optimization of anode-supported solid oxide fuel cells by a comprehensive microscale model, Journal of The Electrochemical Society, 153(2) (2006) A406-A417.
[11] S.P. Jiang, Nanoscale and nano-structured electrodes of solid oxide fuel cells by infiltration: advances and challenges, International journal of hydrogen energy, 37(1) (2012) 449-470.
[12] J.M. Vohs, R.J. Gorte, High‐Performance SOFC Cathodes Prepared by Infiltration, Advanced Materials, 21(9) (2009) 943-956.
[13] Y. Zhang, M. Ni, C. Xia, Microstructural insights into dual-phase infiltrated solid oxide fuel cell electrodes, Journal of The Electrochemical Society, 160(8) (2013) F834-F839.
[14] A. Bertei, J.G. Pharoah, D.A. Gawel, C. Nicolella, Microstructural Modeling and Effective Properties of Infiltrated SOFC Electrodes, ECS Transactions, 57(1) (2013) 2527-2536.
[15] M.J. Synodis, C.L. Porter, N.M. Vo, A.J. Reszka, M.D. Gross, R.C. Snyder, A Model to Predict Percolation Threshold and Effective Conductivity of Infiltrated Electrodes for Solid Oxide Fuel Cells, Journal of The Electrochemical Society, 160(11) (2013) F1216-F1224.
[16] E.F. Hardjo, D.S. Monder, K. Karan, An Effective Property Model for Infiltrated Electrodes in Solid Oxide Fuel Cells, Journal of The Electrochemical Society, 161(1) (2014) F83-F93.
[17] A.J. Reszka, R.C. Snyder, M.D. Gross, Insights into the Design of SOFC Infiltrated Electrodes with Optimized Active TPB Density via Mechanistic Modeling, Journal of The Electrochemical Society, 161(12) (2014) F1176-F1183.
[18] M. Kishimoto, M. Lomberg, E. Ruiz-Trejo, N.P. Brandon, Towards the Microstructural Optimization of SOFC Electrodes Using Nano Particle Infiltration, ECS Transactions, 64(2) (2014) 93-102.
[19] S. Jemeı, D. Hissel, M.-C. Péra, J.-M. Kauffmann, On-board fuel cell power supply modeling on the basis of neural network methodology, Journal of Power Sources, 124(2) (2003) 479-486.
[20] S. Ou, L.E. Achenie, A hybrid neural network model for PEM fuel cells, Journal of Power Sources, 140(2) (2005) 319-330.
[21] M.T. Hagan, H.B. Demuth, M.H. Beale, O. De Jesús, Neural network design, PWS publishing company Boston, 1996.
[22] D. Marra, M. Sorrentino, C. Pianese, B. Iwanschitz, A neural network estimator of Solid Oxide Fuel Cell performance for on-field diagnostics and prognostics applications, Journal of Power Sources, 241 (2013) 320- 329.
[23] S. Bozorgmehri, M. Hamedi, Modeling and Optimization of Anode‐Supported Solid Oxide Fuel Cells on Cell Parameters via Artificial Neural Network and Genetic Algorithm, Fuel Cells, 12(1) (2012) 11-23.
[24] A. Saengrung, A. Abtahi, A. Zilouchian, Neural network model for a commercial PEM fuel cell system, Journal of Power Sources, 172(2) (2007) 749-759.
[25] M. Baniassadi, H. Garmestani, D. Li, S. Ahzi, M. Khaleel, X. Sun, Three-phase solid oxide fuel cell anode microstructure realization using two-point correlation functions, Acta materialia, 59(1) (2011) 30-43.
[26] B. Rüger, J. Joos, A. Weber, T. Carraro, E. Ivers- Tiffée, 3D electrode microstructure reconstruction and modelling, ECS Transactions, 25(2) (2009) 1211-1220.
[27] J. Joos, B. Rüger, T. Carraro, A. Weber, E. Ivers- Tiffée, Electrode Reconstruction by FIB/SEM and Microstructure Modeling, ECS Transactions, 28(11) (2010) 81-91.
[28] Q. Cai, C.S. Adjiman, N.P. Brandon, Modelling the 3D microstructure and performance of solid oxide fuel cell electrodes: computational parameters, Electrochimica Acta, 56(16) (2011) 5804-5814.
[29] C.W. Tanner, K.Z. Fung, A.V. Virkar, The effect of porous composite electrode structure on solid oxide fuel cell performance I. Theoretical analysis, Journal of The Electrochemical Society, 144(1) (1997) 21-30.
[30] Z. Jiang, C. Xia, F. Chen, Nano-structured composite cathodes for intermediate-temperature solid oxide fuel cells via an infiltration/impregnation technique, Electrochimica Acta, 55(11) (2010) 3595-3605.
[31] S.B. Adler, J. Lane, B. Steele, Electrode kinetics of porous mixed‐conducting oxygen electrodes, Journal of the Electrochemical Society, 143(11) (1996) 3554-3564.
[32] A. Babaei, S.P. Jiang, J. Li, Electrocatalytic promotion of palladium nanoparticles on hydrogen oxidation on Ni/GDC anodes of SOFCs via spillover, Journal of the Electrochemical Society, 156(9) (2009) B1022-B1029.
[33] V.M. Janardhanan, V. Heuveline, O. Deutschmann, Three-phase boundary length in solid-oxide fuel cells: A mathematical model, Journal of Power Sources, 178(1) (2008) 368-372.
[34] J.S. Cronin, Three-Dimensional Structure Combined with Electrochemical Performance Analysis for Solid Oxide Fuel Cell Electrodes, NORTHWEStERN UNIVERSITY, 2012.
[35] N. Shikazono, D. Kanno, K. Matsuzaki, H. Teshima, S. Sumino, N. Kasagi, Numerical assessment of SOFC anode polarization based on three-dimensional model microstructure reconstructed from FIB-SEM images, Journal of The Electrochemical Society, 157(5) (2010) B665-B672.
[36] M. Kishimoto, M. Lomberg, E. Ruiz-Trejo, N.P. Brandon, Towards the Design-Led Optimization of Solid Oxide Fuel Cell Electrodes, in: ECS Conference on Electrochemical Energy Conversion & Storage with SOFC-XIV (July 26-31, 2015), Ecs, 2015.
[37] W. He, W. Lv, J. Dickerson, Gas transport in solid oxide fuel cells, Springer, 2014.
[38] F. Zhao, T.J. Armstrong, A.V. Virkar, Measurement of O 2 N 2 Effective Diffusivity in Porous Media at High Temperatures Using an Electrochemical Cell, Journal of the Electrochemical Society, 150(3) (2003) A249-A256.
[39] D.T. Fullwood, S.R. Niezgoda, B.L. Adams, S.R. Kalidindi, Microstructure sensitive design for performance optimization, Progress in Materials Science, 55(6) (2010) 477-562.
[40] B.L. Adams, S. Kalidindi, D.T. Fullwood, Microstructure-sensitive design for performance optimization, Butterworth-Heinemann, 2013.
[41] M. Kishimoto, H. Iwai, M. Saito, H. Yoshida, Quantitative evaluation of solid oxide fuel cell porous anode microstructure based on focused ion beam and scanning electron microscope technique and prediction of anode overpotentials, Journal of Power Sources, 196(10) (2011) 4555-4563.
[42] A. Bertei, B. Nucci, C. Nicolella, Microstructural modeling for prediction of transport properties and electrochemical performance in SOFC composite electrodes, Chemical Engineering Science, 101 (2013) 175-190.
[43] M. Kishimoto, M. Lomberg, E. Ruiz-Trejo, N.P. Brandon, Numerical modeling of nickel-infiltrated gadolinium-doped ceria electrodes reconstructed with focused ion beam tomography, Electrochimica Acta, 190 (2016) 178-185.
[44] W. He, W. Lu, J.H. Dickerson, Gas Transport in Solid Oxide Fuel Cells, Springer, 2014.