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Vibration analysis of piezoelectric graphene platelets micro-plates
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ABSTRACT: Free and forced vibration analyses of micro-plates reinforced with graphene platelets 
integrated with piezoelectric layers are presented. For thermo-electrical vibration examination, a 
uniform temperature field and a constant external electric field along the thicknesses of the piezoelectric 
layers are considered. On the other hand, a uniform in-plane load is regarded along the micro-plate 
edges for a mechanical free vibration analysis. The Halpin–Tsai micromechanical model is used to 
estimate the material properties of each layer of the graphene platelets of core layer. A convergence 
examination is conducted to reach a functionally graded dispersion of graphene platelets layers despite 
the implementation of several individual graphene platelets layers. Four different distribution patterns 
of graphene platelets are considered to examine the vibration features for simply-supported boundary 
condition employing Navier’s technique. Several numerical studies are accomplished to demonstrate the 
effects of the weight fraction, the distribution pattern, the width and the length of the graphene platelets 
besides the material length scale parameter, the thickness of the piezoelectric layers, the micro-plate 
length to the core layer thickness ratio, the applied voltage, the temperature change and the in-plane 
force on the natural frequencies and the time history response. The results demonstrate that in thermal 
environment not only reinforcing with graphene platelets does not improve the structural stiffness but 
also deteriorates it.
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1- Introduction
Nowadays, micro-plates are a concern of many researchers 

in various scientific branches because of their widespread 
applications in numerous industrial fields serving as micro-
resonators and micro actuators. On the other hand, the 
application of graphene platelets (GPLs) as a reinforcement 
material for improving the mechanical properties of other host 
structures is developed thanks to their high tensile strength 
and Young’s modulus. Hence, investigating the vibration 
characteristics of isotropic micro plates as a basic element 
reinforced with the GPLs integrated with piezoelectric layers 
(piezoelectric GPL micro-plates) seems necessary. 

Some available studies in the realm of free vibration of 
micro and macro piezoelectric plates and GPL plates are 
as follow. To show the novelty of the current research the 
presented papers are categorized into three different groups. 
First, a background on the researchers which have analyzed 
the mechanics of macro-plates with piezo-layers is presented. 
Next, the papers on macro-plates reinforced with GPLs are 
reviewed. Finally, some more related researches about micro-
plates which in their formulations the size dependency is 
incorporated are discussed.   

Many researchers have worked on the vibrations of plates 

with attached piezo-layers employing the classical continuum 
theories for plates. Askari Farsangi et al. [1] studied the free 
vibration of moderately thick multi-layer piezoelectric plates. 
The governing equations were established resorting the 
Mindlin theory assumptions for the plates. Levy’s technique 
was implemented to estimate the natural frequencies. The 
piezoelectric layer thicknesses, as well as the plate aspect 
ratio influences on the natural frequencies, were examined. 
They indicated that the natural frequencies are impressed by 
the elastic stiffness elements in the closed circuit condition 
while the piezoelectricity exhibits its significance in the open 
circuit condition. Free vibration analysis of carbon nanotube 
(CNT) reinforced plates integrated with piezoelectric layers 
was examined by Kiani [2]. The governing equations were 
on the basis of the first order shear deformation theory for the 
plates. The Ritz technique was employed to extract the natural 
frequencies. The piezoelectric layers thicknesses, the CNT 
volume fraction and the CNT dispersion profile influences 
on the natural frequencies were studied. The outcomes 
demonstrated the stiffening effects of the piezoelectricity 
in the open circuit conditions. Bouazza and Zenkour [3] 
examined the linear natural frequencies of CNT reinforced 
composite plates employing a refined higher order theory.

Recently, the vibration analysis of GPL macro-plates is 
also in the spotlight of researchers. Shen et al. [4] examined *Corresponding author’s email: hadi.arvin@sku.ac.ir 
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the nonlinear free vibration of functionally graded (FG) 
GPL plates formulated on the basis of the higher order shear 
deformation plate theory in thermal environment. A two-step 
perturbation approach was employed to derive the nonlinear 
natural frequencies. The findings revealed a reduction 
treatment for the nonlinear natural frequencies owing to 
the increment of the temperature as well as the foundation 
stiffness decrement. The free and forced vibration analyses 
of FG GPL plates formulated based on the first order shear 
deformation theory were presented by Song et al. [5]. The 
Halpin-Tsai micromechanical model was employed to define 
the GPL layer effective Young’s modulus while the rule of 
mixtures determined the effective mass density as well as 
the Poisson’s ratio of the GPL layer. Resorting the Navier’s 
technique the numerical results were achieved. The outcomes 
demonstrated that the natural frequencies and the vibration 
amplitude are impressed significantly by adding a small 
amount of GPL weight fraction. García-Macías et al. [6] 
presented the bending and the free vibration analyses of plates 
reinforced with CNTs versus the GPLs. By the implementation 
of the Mori-Tanaka micromechanical model the mechanical 
properties of the structure were obtained. Making use of 
the finite element (FE) approach the numerical results were 
extracted. The outcomes demonstrated that the GPL plates 
are stiffer than the CNT plates when the same amount of 
reinforcement weight fractions is implemented. Gholami 
and Ansari [7] examined the nonlinear forced vibration of 
GPL rectangular plates subjected to harmonic excitation. 
The governing equations were developed employing the 
third order shear deformation plate theory. The time periodic 
discretization was applied to the discretized equations of 
motion achieved by the Galerkin approach to obtain a set of 
nonlinear algebraic equations. This set of nonlinear algebraic 
equations was treated by the pseudo arc-length continuation 
technique beside the modified Newton-Raphson method. The 
results revealed that the GPL reduces the vibration amplitude 
and increases the natural frequencies especially in adding 
low-order amount of the GPL weight fraction. Qaderi et al. 
[8] investigated the free vibration of GPL plates in thermal 
environment. The equations of motion were on the basis of 
the higher order shear deformation theory. The Halpin-Tsai 
micromechanical model was employed to determine the 
mechanical properties of the GPL layers. The results indicated 
that the natural frequencies enlarge by reinforcing the matrix 
regardless of the GPL distribution pattern. The free vibration 
analysis of GPL plates was examined by Pashmforoush [9] on 
the basis of the Reddy third order shear deformation theory. 
The Halpin-Tsai micromechanical model was implemented 
to estimate the GPL layers mechanical properties. The FE 
approach was applied the governing equations to obtain 
the natural frequencies. He declared that the GPL weight 
factions, as well as the plate boundary conditions, are the 
two significant parameters in the determination of the GPL 
plate natural frequencies. Stability and the vibration of porous 
GPL plates with piezoelectric layers undergo supersonic 
flow were considered by Saidi et al. [10]. The first order 
shear deformation plate theory defined the displacement 

field relations. The Galerkin approach was applied on the 
governing equations to extract the numerical outcomes. The 
findings illustrated that the open loop natural frequencies are 
greater than the closed loop ones. Moreover, the stability of 
the GPL plate developed significantly in consequence of the 
increment of the GPL weight fraction. 

The versatility of MEMS such as micro resonators has 
pushed the topics of researches to analyze the mechanics 
of microplates. On the other hand, sub-size plates behave 
differently in some aspects with respect to the macro-
plates. In this respect, non-classical continuum theories 
have been established based on experimental and computer 
simulations or even continuum mechanics science to have 
more precise models confirming the real treatment of micro 
plates. Chen and Li [11] developed a new modified couple 
stress theory (MCST) for composite laminated Kirchhoff 
plates. The proposed theory considered two more length 
scale parameters than the ad-hoc MCST for fiber and matrix. 
Nonlinear bending examination of circular microplates 
subjected to a transverse uniform load was studied by Wang 
et al. [12] on the basis of a size-dependent Kirchhoff plate 
theory. Yue et al. [13] proposed a nonclassical Kirchhoff plate 
theory including the surface effects in the framework of strain 
gradient theory and surface elasticity theory. They inferred 
that the surface-induced internal residual stress impact is on 
the other side of the influences of the length scale parameter 
as well as the surface residual stress. The Kirchhoff plate 
theory was implemented by Li and Ma [14] to study the free 
vibrations of FG microplates with thermoelastic damping. 
They inferred that minimum thermoelastic damping can be 
defined by the adjustment of the physical and geometrical 
properties of the FG microplate. Abbaspour and Arvin 
[15] studied the vibrations and thermal buckling of FG 
micro-plates with centrosymmetric piezoelectric facesheets 
employing the consistent couple stress theory. They deduced 
that the flexoelectricity enhances the structural stiffness and 
consequently the natural frequency, as well as the critical 
thermal buckling temperature, steps up. They proposed a 
closed form relation which defines the natural frequencies. 
Arefi et al. [16] investigated the size dependent free vibration 
of FG micro plates integrated with piezo-magnetic layers 
resting on the Pasternak foundation. The MCST alongside the 
first order shear deformation plate theory was implemented 
to derive the governing equations. The Navier’s approach 
was applied on the equations of motion to achieve the natural 
frequencies. The findings revealed an ascending trend for the 
natural frequencies by the growth of the core layer thickness 
to the piezoelectric layers thickness ratio due to its stiffening 
impact on the structural flexural rigidity. 

Considering the literature review, we can see that the 
mechanics of MEMS reinforced with GPLs have not been 
examined yet. On the other hand, these micro-structures are 
usually coupled with piezo-layers in order to be capable for 
mass sensing purposes and also in various micro-actuators. 
Accordingly,  a study on the free and forced vibration 
attributes of micro plates reinforced with graphene platelets 
with piezoelectric layers (piezoelectric GPL micro plates) is 
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required to find out the significant impression of the GPLs 
reinforcements in thermo-electrical loading conditions of 
such structures usually employed in MEMS. Hence, this 
paper deals with the mechanical free vibration and the 
thermo-electrical free and forced vibration investigations 
of piezoelectric GPL micro plates. The Halpin–Tsai 
micromechanical model is employed for the determination of 
the effective mechanical properties of the GPL layers. The 
governing equations are developed based on the Kirchhoff 
plate theory assumptions in accompany with the MCST to 
enrich the equations of motion with the size effects. The 
Navier’s technique is utilized to derive the free and forced 
vibration aspects of simply-supported piezoelectric GPL 
micro plates. A comparison of the current outcomes with the 
available results in the literature reveals the validity of the 
current formulation and the findings. A convergence study is 
accomplished to achieve a continuous variation of the GPL 
layers mechanical properties along the micro plate core layer 
thickness, i.e. FG distribution of GPLs, even with making use 
of few GPL layers. The effects of the temperature difference, 
the external voltage, the in-plane load, the GPL distribution 
pattern, the GPL weight fraction, the GPL layer length, the 
GPL layer width, the piezoelectric layers thicknesses to the 
host layer thickness ratio, the micro plate length to the host 
layer thickness proportion and the host layer thickness to 
the material length scale parameter ratio on the fundamental 
natural frequency and the time history response are 
investigated. 

2- Mathematical Modeling 
2- 1- Fundamental relations

In order to enrich the governing equations with the size 
effects, the MCST is employed. Accordingly, the strain 
energy for a structure occupying volume ∀ , including the 
electrical effects, can be expressed by [2, 17]:
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where ó ij , ijε , ijm , ijχ , iD  and iE  represent the 
stress tensor, the strain tensor, the deviatoric part of the 
symmetric couple stress tensor, the symmetric curvature 
tensor, the electric displacement vector and the electric field 
vector, respectively. 

The deviatoric part of the symmetric couple stress tensor 
is defined by [17]:
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in which l and µ  indicate the length scale parameter and 
the shear modulus, respectively. The symmetric curvature 
tensor is determined through [17]:
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where iθ  is the rotation vector described by [17]:
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in which ku  and ijke  denote the displacement field 
vector and the permutation tensor, respectively. 

The stress tensor components for the plane stress condition 
are determined by [18]:
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in which 31e  and 32e  point out the piezoelectric 
constants and ijQ ’s represent the effective orthotropic 
elastic coefficients for the plane stress condition presented 
in Eq. (A.5) in Appendix. Moreover, T∆ is the temperature 
change and 11α  and 22α  stand for the thermal expansion 
coefficients. 

The strain tensor is defined through the Green-Lagrange 
strain displacement relation [18]:
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 Furthermore, the electric displacement vector components 
are described by [18]:
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in which ip ’s and iik ’s are the pyroelectric coefficients 
and the dielectric permittivity constants, respectively. 

2- 2- The micro plate geometry
The geometrical view of a three-layered simply-supported 

rectangular micro plate undergoes external voltages, V, is 
depicted in Fig. 1. a, b and h, are, respectively the length, the 
side and the total thickness of the micro plate. The x- and the 
y- axes are oriented along the micro plate length and width, 
respectively, while the z-axis is directed along the micro plate 
thickness. The origin of the (x,y,z) coordinate system, i.e. O, 
is located at the left corner of the micro plate mid-plane. The 
host layer is made of epoxy reinforced with FG GPLs. The 
bottom and the top surfaces of the host layer are integrated 
with two piezoelectric layers with thicknesses equal to 1h  
and 3h , respectively. 

The electric field vector is determined by [2]:
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in which ϕ  is the electric potential. It is assumed that, 

the bottom and the top piezoelectric layers are subjected to 
external voltages, V . According to [19], the spatial form of 
the electric potential division for each piezoelectric layer can 
be considered as (Eq. (6a) in [19]):
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in which ( )1 ,x yψ  and ( )3 ,x yψ  are, respectively, the 
in-plane dispersion of the bottom and the top piezoelectric 
layers electric potentials while ( )i zφ  and ( )if z  denote, 
respectively, the distribution of the electric potential and 
the external voltage along with the piezoelectric layer 
thicknesses. Consistent with Eq. (6a) in [19] the electric 
potential may be considered as a combination of a half-cosine 
and a linearly varying term to satisfy Maxwell’s equation. The 
half-cosine term must vanish at the bottom and top surfaces 
of the piezolayer and becomes minus one at the mid-plane 
of the piezolayer. On the other side, the linear term must 
vanish at the mid-plane of the piezolayers and becomes one 
and minus one, respectively, at the top and bottom surfaces of 
the piezolayers. In this respect, the distribution of the electric 
potential and the external voltage along the bottom and the 
top piezoelectric layers thicknesses can be considered as 
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Fig. 1: Geometry of an FG GPL (A-Pattern) micro plate integrated with piezoelectric layers. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 1. Geometry of an FG GPL (A-Pattern) micro plate integrated with piezoelectric layers.
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2- 3- The effective mechanical properties of a GPL layer
Four considered different FG GPL distribution patterns 

are depicted in Fig. 2. 

Due to manufacturing matters, it is hard to access an 
FG GPL distribution pattern. Hence, a number of GPL 
layers with different GPL volume fraction are assembled to 
reach something like continuous mechanical properties. A 
convergence examination which is presented in Sect. 4.2.1 
reveals how many layers are required to have this continuity. 
The kth layer volume fraction, i.e. ( )k

GPLV , for different 
distribution patterns is prescribed by [20, 21] as:
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where LN  is the total number of the GPL layers of the 
host layer and *

GPLV  is the total GPLs volume fraction in the 
host layer assigned by [20]:
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in which GPLW , GPLρ  and mρ  stand, respectively, for 
the GPL weight fraction and the GPL and the matrix mass 
densities. 

Employing the rule of mixture, the GPL layers Poisson’s 
ratio and the thermal expansion coefficient can be presented, 
respectively, by [20]:
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 (17)

in which GPLν  and mν  are, respectively, the GPL 
and the matrix Poisson’s ratios and  GPLα  and mα  are, 
respectively, the GPL and the matrix thermal expansion 
coefficients. Furthermore, mV  indicates the matrix volume 
fraction which is related to the GPL layer volume fraction, i.e. 

GPLV , as follows [20]:
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According to the Halpin-Tsai micromechanical model, 
the GPL layer effective Young’s modulus read as [20]:
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Fig. 2: FG GPL distribution patterns. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 2. FG GPL distribution patterns.
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in which mE  is the matrix Young’s modulus and the 
other parameters are defined by [20]:
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where GPLE  is the GPL Young’s modulus and GPLa
, GPLb  and GPLt  are the GPL length, width and thickness, 
respectively.

2- 4- Deriving the governing equations
According to the assumptions of the Kirchhoff plate 

theory, the displacement field components can be expressed 
by [18]:
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where 0u  and 0v  are, respectively, the in-plane 
displacements of the core mid-plane along the x and y axes 
while w  is the transverse deflection of the core mid-plane. 

The substitution of Eq. (22) into Eq. (6) in accompany 
with the von-Karman strain-displacement assumptions [18], 
delivers the non-zeros strain components:
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where 0
ijε  and 1

ijε  ( ,  and i j x y= ), denote, 
respectively, the membrane and the flexural strains. 

The substitution of Eq. (22), into Eq. (4) reveals the 
rotation vector components:
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Thereafter, the deviatoric part of the symmetric couple 
stress tensor is achieved making use of Eqs. (2), (3) and (24).

Accordingly, the consideration of the non-zero strain and 
the symmetric curvature tensor components develops the 
strain energy, Eq. (1), to: 
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Eventually, the strain energy for the piezoelectric GPL 
micro plate is released by the substitution of Eqs. (5), (7), 
(23) and the resulting nonzero components of the deviatoric 
part of the symmetric couple stress tensor into Eq. (25). 

On the other hand, the kinetic energy in keeping with 
21

2 i iT u dρ
∀

= ∀∫   [22] in which  iρ  is the mass density of the 
ith layer, read as:
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where jI ’s stand for the micro plate inertial coefficients 
defined by: 
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in which 2
1 12

hz h= − − , 2
2 2

hz = − , 2
3 2

hz = , and 2
4 32

hz h= +
.

Resorting the Hamilton’s principle [22], i.e. 
( )2

1

0
t

t
T U dtδ δ− =∫ , the nonlinear governing equations of 

motion are derived:
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where ijM , ijN  and ijY  are the moment and the axial 
force resultants and the higher-order moment resultants 
defined, respectively, in Eqs. (A.2), (A.1) and (A.7) in 
Appendix. In addition, ( )

3
j
iE  and ( )

3
j
iH are related the 

piezoelectric constants and the distribution of the electric 
potential along the piezoelectric layer thicknesses determined 
by:
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For the sake of brevity, the associated boundary conditions 
and also the displacement form of the governing partial 
differential equations are presented, respectively, in Eqs. 
(A.15)-(A.34) and (A.10)-(A.14)  in Appendix. 

3- Solution strategy
To extract the free and forced vibration analysis outcomes 

for an immovable simply-supported piezoelectric FG GPL 
micro plate, the Navier’s solution is employed. In this respect, 
according to the considered type of boundary supports for the 



F. Abbaspour and H. Arvin, AUT J. Mech. Eng., 5(3) (2021) 361-386, DOI: 10.22060/ajme.2021.18655.5911

368

micro plate, some essential and natural conditions must be 
satisfied. The essential conditions for the displacement field 
components and the in-plane electric potential may be written 
as:
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while for the sake of brevity the natural boundary 
conditions are presented in Eqs. (A.15)-(A.34) in Appendix. 
For satisfying the mentioned boundary conditions and the 
natural boundary conditions reported in Appendix the 
displacement field components and the in-plane electric 
potential distributions are regarded, respectively, as:
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 and  mnU , mnV

, mnW , 1mnP  and 3mnP  are the time dependent amplitude 
of the in-plane and transverse displacements and the time 
dependent amplitude of the in-plane electric potential 
dispersions, respectively. Moreover, m and n are related to 
the natural frequency mode number. It should be pointed out 

that in the case of the immovable boundary conditions the 
mechanical in-plane load is considered zero and only the 
symmetric GPL distribution patterns are examined.

3- 1- Free vibration analysis
In the case of the thermo-electrical free vibration analysis 

a harmonic variation for the displacement and the electrical 
amplitudes are considered such as ( ) ( )sint tω=u u  
and ( ) ( )sint tψ ψ ω=  in which T

mn mn mnU ,V ,W =  u
, T

1 3, mmn nP Pψ  =     and ω  is the corresponding natural 
frequency. Considering the aforementioned harmonic 
variations for the displacement and the electrical amplitudes, 
Eqs. (35)-(39) are substituted into the left hand side of the 
linearized version of the governing equations, Eqs. (A.10)-
(A.14). The weighted residual technique [22] is applied 
on the ensuing relations. Accordingly, a proper weighting 
function is multiplied to each ensuing relation and the 
resultant is integrated on the domain of the micro-plate. In this 
regard, respectively, ( ),uN x y , ( ),vN x y , ( ),wN x y , 

( ),N x yψ  and ( ),N x yψ  are the appropriate weighting 
functions for these five resulting relations. For example, for 
Eq. (A.10) we have:
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Consequently, a set of equations which delivers the natural 
frequencies is deduced:
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in which M uu  is the mass matrix, Kuu  is the elastic 
matrix, 

 uψK  is the piezoelectric matrix, u uψ ψ= TK K  and 
ψψK  is the permittivity matrix. 
In this paper, two different electrical boundary conditions 

are examined; the open and the closed circuit electrical 
conditions. In the open circuit condition, the electric potential 
amplitude vector is obtained from the second row of Eq. (40) 

as 1
uψψ ψψ −= − ×K K u . Replacing the resulting electric 

potential vector into the first row of Eq. (40) delivers a 
standard eigen-value problem which releases the natural 
frequencies for the open circuit condition:
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On the other hand, for the closed circuit condition in 
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which the piezoelectric layers surfaces are short-circuited, the 
electric potential amplitude vector is 0ψ =  and subsequently, 
from Eq. (40), the eigen-value problem which leads to the 
natural frequencies for the closed circuit conditions read as: 
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For the evaluation of the free vibration features in 
terms of the external in-plane load the movable boundary 
conditions are adjusted and all four GPL dispersion patterns 
are analyzed. Meanwhile, the temperature change and the 
external applied voltage are considered zero. In this case, the 
in-plane axial displacement read as: 
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Moreover, the following adjustment for a uniform 
compressive in-plane force is required to apply on Eq. (28), 

0xx yyN N N= ≡ −  and 0xyN = . The same route which was 
expressed for the thermo-electrical free vibration examination 
leads to the closed and the open circuit conditions natural 
frequencies.

 
3- 2- Forced vibration analysis

A distributed external transverse force is considered 
as ( ) ( ), , sin sinm x n yF x y t F t

a b
π π   =    

   
 to analyze the 

forced vibration aspects. In this condition, the micro 
plate is motivated to vibrate in its ( ),m n th mode shape 
configuration. Subsequently, the implementation of the 
Navier’s technique results in:

(45) 
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in which ( )
T

0 0
0 0 , , sin sin d d  

a b m x n yF x y t y x
a b
π π    =         

∫ ∫F
.
Eq. (45) consists of 5 ordinary differential equations (ODEs) 
although a similar procedure as Sect. 3.1. reduces this set of 

ODEs to 3 coupled ODEs for both the closed and the open 
circuit conditions. Assuming zero initial conditions, the 
forced vibration response can be determined through the 
methodology released in Sect. 4.10 of [22].   

 
4- Results and Discussion
4- 1- Verification 

In order to validate the free vibration results, a square 
simply-supported FG GPL plate with piezoelectric layers 
formulated based on the Reddy third order shear deformation 
plate theory assumptions is considered [23]. The polygonal 
FE formulation method has been implemented in [23] to 
extract the natural frequencies. The core layer is made of 
Copper as the matrix phase which is reinforced by the GPLs. 
The number of the GPL layers is 10LN = . Moreover, the 
Young’s modulus, the mass density and the Poisson’s ratio 
of the Copper are, respectively, 130 (GPa), 8960 ( 3kg / m ) 
and 0.34 [23]. Furthermore, the Young’s modulus, the mass 
density and the Poisson’s ratio coefficient of the GPL are, 
respectively, 1010 (GPa), 1062.5 ( 3kg / m ) and 0.186 [23]. 
The piezoelectric layers are made of PZT-4 with the following 
electro-mechanical properties:

( )11 22 81.3 GPaE E= = , 12 0.33ν = ,
( ) ( )11

12
12

30.6 GPa
2 1

EG
ν

= =
+

, 37600 (kg / mρ = ) , 31 32d d= = - 1 . 2 2 × 1010  − ( m / Vo l t ) , 

11 22k k= = 1475 0ε (F/m), 33k = 1300 0ε (F/m) and 
12

0 8.85 10ε −= ×  (F/m) [23]. The plate geometrical data are a=b=1 
(m), 2h =50 (mm), 1 3h h= = 1 (mm), GPLa =2.5 ( )ì m , GPLb
=1.5 ( )ì m  and GPLt =1.5 (nm). The first natural frequency for 
the closed circuit condition and for the two cases of the GPL 
weight fraction, 0.5 % and 1 % are presented in Table 1. A 
difference percent below 1 indicates a good agreement. Hence 
the outcomes illustrate the authority of the current results in 
GPL reinforcing modeling.

The second validating study is the assessment of the current 
formulation in preserving the size dependency. The sample is 
a square simply-supported single layer micro plate modeled 
based on the Kirchhoff plate theory alongside the MCST [24]. 
The Levy’s solution has been implemented in [24] to extract the 
natural frequencies. The plate is made of Epoxy with Young’s 
modulus, the mass density and the Poisson’s ratio, respectively, 
equal to 1.44 (GPa), 1220 ( 3kg / m ) and 0.38. The geometrical 
data and the material length scale parameter are, respectively,  
a=b=10 (mm) and l=17.6. mµ  The first natural frequency for 
two cases of the micro plate thickness, i.e. h=l and h=10l, on 
the basis of the classical continuum theory (l=0) and the MCST 
assumptions are presented in Table 2. It should be pointed out 
that the results from [24] are extracted from Fig. 6 of the above-
mentioned reference. Excellent conformity is achieved. 

4- 2- Parametric studies and discussions
After the authentication of the current outcomes, some case 

studies for a simply-supported piezoelectric FG GPL micro 
plate are carried out in this section. The host layer is made of 
several Epoxy layers reinforced with different GPL weight 
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fractions. Both of the piezoelectric layers on the bottom and 
the top of the host layer are made of PZT-5A. The Young’s 
modulus, the mass density, the Poisson’s ratio and the thermal 
expansion coefficient of the Epoxy are, respectively, 3 (GPa), 
1200 ( 3kg / m ), 0.34 and 60 (× 610− /K) [20]. Furthermore, the 
Young’s modulus, the mass density, the Poisson’s ratio and the 
thermal expansion coefficient of the GPL are, respectively, 
1010 (GPa), 1062.5 ( 3kg / m ), 0.186 and 5× 610− /K [20]. In 
addition, the GPL geometrical data and weight fraction are, 
respectively, GPLa =2.5 mµ  , GPLb =1.5 mµ  and GPLt =1.5 
(nm) and 0.3%GPLW =  [20]. The shear modulus for the host 
layer is 

( )66 2 1
EQ
ν

=
+

 [20]. Moreover, the Young’s modulus, 
the shear modulus, the mass density, the Poisson’s ratio 
and the thermal expansion coefficient for the PZT-5A are, 
respectively, 63 (GPa), 24.2 (GPa), 7600 ( 3kg / m ), 0.35, 0.9 
(× 610− /K) and the piezoelectric coefficients are 31 32e e= =
-7.209 2(C / m ) , 24 15e e= = 12.322 2(C / m ) , 11 22k k= =

1.53× 810−  o(W / m K) , 33k = 1.5× 810−  o(W / m K)  [25]. On 
the other hand, the geometrical features for the micro plate 
are: / 1a b = , / 25hb h = , ph  = 

8
hh

 and /hh l  = 1 in which 
l=17.6 mµ . Furthermore, the temperature change, T∆ , is 
set to zero. Henceforth, the preceding geometrical attributes, 
thermal loading condition and the MCST as a base theory are 
assumed for the current extracted outcomes for the FG GPL 
micro plate unless new values or theories are prescribed in 
specific investigations. 

4- 2- 1- Convergence analysis 
At first, to have an accurate FG GPL model with continuity 

in the mechanical properties as well as the vibration treatment 
instead of a multi-layered GPL layers with discontinuity in the 
aforementioned features, a convergence analysis is established 
here. Hereafter, the presented findings are for the open circuit 
condition when 0V ≠  and for the closed circuit condition 

Table 1. The current first natural frequency for a square simply-supported piezoelectric FG GPL 
plate versus the corresponding value reported in [23] (Hz).

 

Table 1. The current first natural frequency for a square simply-supported piezoelectric FG GPL plate 

versus the corresponding value reported in [23] (Hz). 

235.532 212.807 Present results 

U-Pattern 234.182 211.560 Results of [23] 

0.58 0.59 Difference % 

262.329 228.148 Present results 

X-Pattern 260.176 226.503 Results of [23] 

0.83 0.73 Difference % 

232.258 212.916 Present results 

A-Pattern 231.014 211.677 Results of [23] 

0.54 0.58 Difference % 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 2. The present first natural frequency for a square micro plate versus the corresponding value re-
ported in [24] (rad/s).

 

 

Table 2. The present first natural frequency for a square micro plate versus the corresponding value reported 

in [24] (rad/s).  

MCST results  Classical theory results (l=0)   

[24] Current  [24] Current   

2560.4 2559.1 1176.2 1177.9  
 / 1h l   

0.05 0.14 Difference % 

11995.4 11993.3 11776.2 11776.2  
 / 10h l   

0.02 0.00 Difference % 
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when 0V = . The first natural frequency on the basis of the 
MCST for different numbers of GPL layers included in the 
core layer is presented in Table 3 and graphically in Fig. 3. It 
is found that for 10LN =  the convergence is occurred for 
both the open and the closed circuit conditions. Consequently, 
in the future all the outcomes for the piezoelectric FG GPL 
micro plate are calculated and depicted for  10LN = .

4- 2- 2- Free vibration analysis 
Micro plate geometrical characteristics analysis In this 

section, the variation of the fundamental natural frequency 
with respect to the micro plate geometrical features is 
assessed. 

The variation of the first natural frequency on the basis of 
the MCST and the classical theory (CT) ( 0l = ) in terms of 
the piezoelectric layers thicknesses to the host layer thickness 
ratio, i.e. ph / hh , is demonstrated in Fig. 4 for different GPL 
distribution patterns when V=50 (Volt). It should be noted 
that the host layer thickness has been kept constant and only 
the thickness of the piezoelectric layers increases identically. 
It is perceived that by the increase of the ph / hh  ratio, the 
fundamental natural frequency increases. This trend is due 
to the stiffening of the structure which is followed by the 
enhancement of the piezoelectric layer thicknesses. The other 
implication is that always the X-, U-, A- and O-Patterns, 

have, respectively, the maximum to the minimum natural 
frequency owing to the specific intensity division of various 
FG GPLs. Moreover, the FG GPL distribution pattern impact 
on the natural frequency is more distinctive for the lower 
magnitudes of the ph / hh  ratio especially when there is no 
piezoelectric layers attached to the host layer. Although the 
distinction between the FG GPL patterns is more apparent 
for the CT results, Furthermore, the MCST predicts higher 
natural frequency.

The first natural frequency versus the core layer thickness 
to the material length scale parameter ratio, i.e. /hh l , is 
shown in Fig. 5. It can be seen that by the growth of the 

/hh l  ratio, the natural frequency declines as a result of the 
stiffening influence of the material length scale parameter 
on the structure. Moreover, the first natural frequency is 
more impressed by the FG GPL dispersion pattern with the 
augmentation of the /hh l  ratio. 

The changeability of the first natural frequency in terms 
of the micro plate length to the core layer thickness ratio, i.e. 

/ ha h , is depicted in Fig. 6 based on the CT and the MCST. A 
descending trend for the natural frequency is observed since 
the increment of the / ha h  ratio, makes the structure thinner 
and subsequently reduces the structural stiffness.

GPL attributes analysis After the assessment of the 
micro plate geometrical characteristics impacts on the first 

Table 3. The first natural frequency (Mrad/s) for a square piezoelectric multi-layered GPL micro plate 
on the basis of the MCST for different dispersion patterns and external voltages versus the number of 

the GPL layers incorporated in the assemblage of the core layer.

 

Table 3. The first natural frequency (Mrad/s) for a square piezoelectric multi-layered GPL micro plate on the 

basis of the MCST for different dispersion patterns and external voltages versus the number of the GPL 

layers incorporated in the assemblage of the core layer 

Closed Open 
Circuit condition  

O X U O X U 
   4.043 4.043 4.043  50V    Volt 

 2LN   3.874 3.874 3.874 3.874 3.874 3.874  0V   Volt 
   3.698 3.698 3.698  50V   Volt 
   4.029 4.057 4.043  50V    Volt 

 4LN   3.860 3.888 3.874 3.860 3.888 3.874  0V   Volt 
   3.683 3.712 3.698  50V   Volt 
   4.028 4.059 4.043  50V    Volt 

 6LN   3.858 3.891 3.874 3.858 3.891 3.874  0V   Volt 
   3.680 3.715 3.698  50V   Volt 
   4.026 4.060 4.043  50V    Volt 

 8LN   3.856 3.892 3.874 3.856 3.892 3.874  0V   Volt 
   3.679 3.716 3.698  50V   Volt 
   4.026 4.061 4.043  50V    Volt 

 10LN   3.856 3.892 3.874 3.856 3.892 3.874  0V   Volt 
   3.679 3.717 3.698  50V   Volt 

 

 



F. Abbaspour and H. Arvin, AUT J. Mech. Eng., 5(3) (2021) 361-386, DOI: 10.22060/ajme.2021.18655.5911

372

 
Fig. 3: The first natural frequency (Mrad/s) for a square piezoelectric multi-layered GPL micro plate on the 

basis of the MCST for different dispersion patterns versus the number of the GPL layers incorporated in the 

assemblage of the core layer (a)-V= 0 (Volt) and (b)- V= 50 (Volt). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 3. The first natural frequency (Mrad/s) for a square piezoelectric multi-layered GPL micro plate on the 
basis of the MCST for different dispersion patterns versus the number of the GPL layers incorporated in the 

assemblage of the core layer (a)-V= 0 (Volt) and (b)- V= 50 (Volt).

 

 
Fig. 4: The first natural frequency (Mrad/s) for a square piezoelectric multi-layered GPL micro plate in 

terms of the piezoelectric layers thicknesses to the host layer thickness ratio, /p hh h , based on the (a)-CT 

and the (b)-MCST (V=50 (Volt)). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 4. The first natural frequency (Mrad/s) for a square piezoelectric multi-layered GPL micro plate in terms 

of the piezoelectric layers thicknesses to the host layer thickness ratio, /p hh h  , based on the (a)-CT and the (b)-
MCST (V=50 (Volt)).
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natural frequency, the GPL geometrical aspects as well as 
the GPL weight fraction effects on the fundamental natural 
frequency for three different external voltages, i.e. V= -50, 0 
and 50 (Volt), are examined in this section. 

The influence of the GPL side, GPLb , on the first natural 
frequency is demonstrated in Fig. 7. It can be observed that 
the increment of GPLb  is accompanied with the ascendant 
of the natural frequency. On the other hand, by the growth 

of GPLb  the FG GPL dispersion pattern impact is boosted. 
Moreover, by the enhancement of the external voltage, the 
natural frequency reduces thanks to the resulting electric 
compressive force which makes the structure weaker. It 
is worth to note that, according to Eq. (A.1) presented 
in Appendix, the sign of the resulting electric force is 
negative (positive) as a consequence of positive (negative) 

 
Fig. 5: The first natural frequency (Mrad/s) for a square piezoelectric FG GPL micro plate in terms of the 

host layer thickness to the material length scale parameter ratio, /hh l , based on the MCST, (V=50 (Volt)). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 5. The first natural frequency (Mrad/s) for a square piezoelectric FG GPL micro plate in terms of the host 

layer thickness to the material length scale parameter ratio, /hh l  , based on the MCST, (V=50 (Volt)).

 

 
Fig. 6: The first natural frequency (Mrad/s) for a square piezoelectric FG GPL micro plate in terms of the 

micro plate length to the host layer thickness ratio, / ha h , based on the (a)-CT and the (b)-MCST, (V=50 

(Volt)). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 6. The first natural frequency (Mrad/s) for a square piezoelectric FG GPL micro plate in terms of the 

micro plate length to the host layer thickness ratio, / ha h  , based on the (a)-CT and the (b)-MCST, (V=50 
(Volt)).
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voltages and the sign of 31e  and 32e  which are negative 
here. Subsequently, a positive (negative) voltage generates a 
compressive (tensile) axial force.

The variation of the fundamental natural frequency versus 
GPLa  is shown in Fig. 8. The figure indicates an ascending 

trend for the first natural frequency by the augmentation of 
GPLa . Moreover, although by the increment of GPLa  the GPL 

distribution pattern impact on the natural frequency is more 
noticeable however this feature is not comparable with GPLb  
variation influence. 

The fundamental natural frequency versus the GPL weight 

fraction, GPLW , is depicted in Fig. 9. As a result of the GPL 
weight fraction augmentation the natural frequency increases. 
Furthermore, the significance of the GPL dispersion pattern is 
manifested with the growth of the GPL weight fraction. 

Thermo-electrical free vibration analysis In this section 
the simultaneous interaction of the temperature change and 
the external voltage on the fundamental natural frequency is 
examined in Fig. 10. The Fig. predicts a descending treatment 
for the natural frequency as a result of the temperature 
augmentation. Consequently, at a threshold value of the 
temperature change depends on the external voltage 
magnitude the fundamental natural frequency degenerates. 

 

 
Fig. 7: The first natural frequency (Mrad/s) for a square piezoelectric FG GPL micro plate in terms of the 

GPL side, GPLb ,  based on the MCST (a)- V=-50 (Volt), (b)- V=0 (Volt) and (c)- V=50 (Volt). 

 

 

 

 

 

 

 

 

 

Fig. 7. The first natural frequency (Mrad/s) for a square piezoelectric FG GPL micro plate in terms of the GPL 

side, GPLb  ,  based on the MCST (a)- V=-50 (Volt), (b)- V=0 (Volt) and (c)- V=50 (Volt).
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This phenomenon is directly associated with the thermo-
electrical buckling of the FG GPL micro plate. Although, the 
aforementioned threshold value for the temperature change 
can be postponed by a negative external voltage. 

For more illustration the voltage influence on the 
fundamental natural frequency of an FG-X GPL micro plate 
for two different magnitudes of the temperature change 
is shown in Fig. 11. The figure indicates that the natural 
frequency reduces by the augmentation of the external 
voltage due to the similar reason explained in the opening of 
Sect. 4.2.2.

Mechanical free vibration analysis The effect of 
the nondimensional uniform compressive in-plane load, 

2
0

0 3
ˆ

m h

N aN
E h

= , on the fundamental natural frequency is examined 
in Fig. 12. As afore mentioned in Sect. 3. the present 
outcomes are for a movable simply-supported micro plate 
and the temperature change and the external voltage are equal 
to zero. As expected the natural frequency decreases as a 
consequence of stepping up the nondimensional in-plane load 
from a tensile in-plane load (at left) to a compressive load 
(at right) which consequently yields to the buckling of the 
micro plate. The nondimensional critical buckling load, 0N̂ , 
for the U-, X-, O- and A-Patterns, respectively, is determined 

 

 
Fig. 8: The first natural frequency (Mrad/s) for a square piezoelectric FG GPL micro plate versus the GPL 

length, GPLa , based on the MCST (a)- V=-50 (Volt), (b)- V=0 (Volt) and (c)- V=50 (Volt). 

 

 

 

 

 

 

 

 

 

Fig. 8. The first natural frequency (Mrad/s) for a square piezoelectric FG GPL micro plate versus the GPL 

length, GPLa  , based on the MCST (a)- V=-50 (Volt), (b)- V=0 (Volt) and (c)- V=50 (Volt).
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Fig. 9: The first natural frequency (Mrad/s) for a square piezoelectric FG GPL micro plate versus the GPL 

weight fraction, GPLW , based on the MCST (a)- V=-50, (Volt), (b)- V=0 (Volt) and (c)- V=50 (Volt).  

 

 

 

 

 

 

 

 

 

 

Fig. 9. The first natural frequency (Mrad/s) for a square piezoelectric FG GPL micro plate versus the GPL 

weight fraction, GPLW  , based on the MCST (a)- V=-50, (Volt), (b)- V=0 (Volt) and (c)- V=50 (Volt). 

equal to 95.748, 96.638, 94.861, 95.665.

4- 2- 3- Thermo-electrical forced vibration analysis 
The forced vibration analysis is addressed here. 

The external transverse force distribution is assumed as 
( ) ( )0, , sin sinx yF x y t F u t

a b
π π

=  to directly excite the first 
mode in which ( )u t  is the step function. The nondimensional 
amplitude of the external force is taken as 0̂ 5F =  where 

2
0

0 3
ˆ

m h

F aF
E h

= . The time history response of the micro plate 
center ( , ) ( / 2, / 2)x y a b=  for an immovable piezoelectric 

GPL simply-supported micro plate in terms of the 
nondimensional time ( )1 /m mE t

a
τ ρ=  for a not-reinforced 

micro plate, 0GPLW = , and for GPL weight fraction equal to 
0.3%GPLW =  is depicted in Fig. 13.  The presented results are 

calculated for a U GPL distribution pattern. It can be seen 
that when the temperature change is zero and the external 
voltage is zero or not the reinforced micro plate is stiffer and 
subsequently the micro plate deflection as well as the time 
period of the response is slightly smaller or in other words 
the fundamental natural frequency is larger in consistent with 
Fig. 9. Moreover, a positive external voltage always weakens 
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Fig. 10: The first natural frequency (Mrad/s) for a square piezoelectric FG GPL micro plate versus the 

temperature difference, T , based on the MCST (a)- V=-50 (Volt), (b)- V=0 (Volt) and (c)- V=50 (Volt). 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 10. The first natural frequency (Mrad/s) for a square piezoelectric FG GPL micro plate versus the tempera-
ture difference, ∆T  , based on the MCST (a)- V=-50 (Volt), (b)- V=0 (Volt) and (c)- V=50 (Volt).

 

 
Fig. 11: The first natural frequency (Mrad/s) for a square piezoelectric FG-X GPL micro plate versus the 

external voltage, V , based on the MCST. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 11. The first natural frequency (Mrad/s) for a square piezoelectric FG-X GPL micro plate versus the exter-
nal voltage, V, based on the MCST.
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reinforced or not-reinforced structures approximately in the 
same way. On the other hand, when the temperature emerges 
the story is different because of its contribution to induce a 
compressive axial force which inclines to decline the structural 
stiffness in contrast with the GPL weight fraction tendency. 
The GPL weight fraction enhancement improves to some 
extent the flexural rigidity comparing with the axial rigidity. 
Alternatively according to Eq. (A.6) the growth of the latter 

mutually boosts up the thermal resultant axial force when the 
micro plate is reinforced with the GPLs and consequently, 
in the thermal environment the GPL reinforcing decays the 
structural stiffness. 

The GPL side, GPLb , impact on the time history response 
of the micro plate center is examined in Fig. 14. The same 
implication as the previous study can be made. Although the 
GPL side augmentation stiffens the structure however the 

 

 

 
Fig. 12: The first natural frequency (Mrad/s) for a square piezoelectric FG GPL micro plate versus the 

uniform in-plane mechanical load based on the MCST. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 12. The first natural frequency (Mrad/s) for a square piezoelectric FG GPL micro plate versus the uniform 
in-plane mechanical load based on the MCST. 

 

Fig. 13: The time history response of the micro plate center ( , ) ( / 2, / 2)x y a b  for a square immovable 

simply-supported piezoelectric U-GPL micro plate in terms of the nondimensional time based on the MCST (

0GPLW : thin lines; 0.3GPLW % : thick lines). 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 13. The time history response of the micro plate center ( , ) ( / 2, / 2)=x y a b   for a square immovable simply-
supported piezoelectric U-GPL micro plate in terms of the nondimensional time based on the MCST ( 0=GPLW : 

thin lines; 0.3=GPLW % : thick lines).
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stiffening is smaller than the decline caused by the thermal 
resultant axial force which is manifested by the GPL side 
enlargement. Subsequently, the micro plate deflection and the 
time period of the response are getting greater.

For more illustration, the two preceding time history 
response analyses are collected in Fig. 15. In each division 
of the figure the same external voltage, as well as the thermal 
loading, is considered. The outcomes lead to the same 
inference.

5- Conclusions
The mechanical free vibration and the thermo-electrical 

free and forced vibrations of simply-supported piezoelectric 
functionally graded graphene platelets micro plates were 
examined. The modified couple stress theory alongside 
the Kirchhoff plate theory assumptions were employed to 
derive the governing equations by the implementation of the 
Hamilton’s principle. Resorting the Navier’s approach the 
free and forced vibration outcomes for the closed and the open 
circuit conditions were extracted. The findings demonstrate:

A positive voltage as well as temperature increment 
declines the structural stiffness and consequently the 
fundamental natural frequency decreases and the deflection 

 

 

Fig. 14: The time history response of the micro plate center ( , ) ( / 2, / 2)x y a b  for a square immovable 

simply-supported piezoelectric U-GPL micro plate in terms of the nondimensional time based on the MCST (

1.5 μmGPLb  : thick lines; 3 μmGPLb  : thin lines). 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 14. The time history response of the micro plate center ( , ) ( / 2, / 2)=x y a b   for a square immovable 
simply-supported piezoelectric U-GPL micro plate in terms of the nondimensional time based on the MCST 

( 1.5µ=GPLb  m : thick lines; 3µ=GPLb  m : thin lines).

amplitude and the time period of the forced vibration response 
increases.

For immovable boundary conditions stepping up the 
temperature leads to the degeneration of the fundamental 
natural frequency which is directly interrelated with the 
destabilization of the micro plate due to the buckling 
occurrence. Although the destabilization can be postponed to 
higher temperature by a negative voltage.

Enlarging the GPL attributes may not always lead to 
boosting up the structural stiffness and it depends also on the 
thermal loading condition.

Enlarging the GPL attributes such as the GPL side, 
the GPL length and the GPL weight fraction improves the 
structural stiffness which subsequently results in a larger 
fundamental natural frequency in the absence of thermal 
loading.

The increment of the GPL features decays the structural 
stiffness when the micro plate is in thermal environment.

The GPL dispersion pattern contribution develops 
considerably by the reduction of the piezoelectric thickness 
and the material length scale parameter as well as the 
augmentation of the GPL weight fraction and the GPL side.
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Fig. 15: The time history response of the micro plate center ( , ) ( / 2, / 2)x y a b  for a square immovable 

simply-supported piezoelectric U-GPL micro plate in terms of the nondimensional time based on the MCST, 

based on the MCST (a)- 0 T  and V=0 (Volt), (b)- 0 T  and V=50 (Volt), (c)- 500 T  K and V=0 

(Volt) and (d)- 500 T  K and V=50 (Volt). 
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Appendix

The force and the moment resultants: 
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yyN  are the thermal force resultants read as: 
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The higher order moment resultants are as follow: 
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The final nonlinear governing partial differential equations of the micro plate: 
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