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ABSTRACT: In the present research, vibration behavior is presented for a thermally postbuckled two 
side clamped monolayer graphene nanoribbon. The monolayer graphene nanoribbon is modeled as 
a nonlocal orthotropic plate strip which contains small scale effects. The formulations are based on 
the Kirchhoff’s plate theory, and von Karman-type nonlinearity is considered in strain-displacement 
relations. The thermal effects are also included and the material properties are assumed to be 
temperature-dependent. The initial deflection caused by thermal postbuckling and internal loads are 
taken into account. A coupled system of equations is derived and a new semi analytical solution is 
obtained. The effects of variation of small scale parameter ae0  to the natural frequencies, deflections 
and mode shapes of graphene nanoribbon are analyzed and the numerical results are obtained from the 
nonlocal plate model; also, molecular dynamics simulations are used to investigate different properties 
of graphene nanoribbon including both buckling and vibrational behaviors. The small scale coefficient 
is calibrated using molecular dynamics simulations. Numerical results are compared with those of 
similar researches. Effects of various parameters on the postbuckled vibration of graphene nanoribbon 
in thermal environments such as scale parameter, length and thermal load are presented. Stability and 
occurrence probability of internal resonance between vibration modes around a buckled configuration 
is investigated.
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1. Introduction
Graphene is a 2 Dimensional (2-D) leaf that consists of 

carbon atoms in a hexagonal configuration. In a monolayer 
graphene sheet, each carbon atom connects to three other 
carbons. These bonds are in a single flat plate and all of 
them have the equal angles. Graphene structures have 
superior properties and they are introduced as one of the 
fundamental carbon forms and graphene is the base of many 
other configurations such as graphite, carbon nanotubes and 
fullerenes [1]; therefore, studying Single Layer Graphene 
Sheets (SLGSs) is very important in nanoscale studies 
[2].Recently nanoscale structures such as nanobeams, 
nanoplates and the strip type of nanoplates that are called 
nanoribbons have gained considerable attention from both 
the experimental and theoretical researchers [3-7]. This is 
because nanostructures possess much superior mechanical, 
electrical, electronic, and thermal properties as compared to 
the conventional structural materials [8-10]. 

In nano scale plate problems, solutions due to classical 
theories such as Kirchhoff’s plate theory and shear 
deformation plate theory usually have remarkable errors 
because in these theories, the relation between stress and 
strain is point wise and the size effects are not considered 

[11]. In nonlocal elasticity theory, the stress at a reference 
point is assumed to be a functional of the strain field at every 
point in the body and the effects of scale are considered by a 
new quantity called scale parameter [12].

Based on Eringen’s nonlocal elasticity theory, effects of 
size are taken into account by employing a scale parameter and 
applying it into classical continuum models [11,12]. Pradhan 
and Phadikar [13] used the nonlocal differential constitutive 
relations of Eringen to reformulation of CLassical Plate 
Theory (CLPT) and First-order Shear Deformation Theory 
(FSDT) of plates. Nazemnezhad [14] studied shear effect of 
Van Der Waals (VDWs) interactions on free vibration of a 
Multi-Layer Graphene NanoRibbon (MLGNR) in a cantilever 
form by employing nonlocal Timoshenko beam model and 
Molecular Dynamics (MD) simulations. He showed that the 
quantity of nonlocal parameter is directly related to the number 
of MLGNR layers, and its value increases by increasing 
the number of Graphene NanoRibbon (GNR) layers. Shi 
et al. [15] showed that the natural frequencies of MLGNR 
embedded in an elastic matrix are significantly influenced 
by nonlocal effects. Varzandian and Ziaee [7] proposed an 
analytical method for solution of non-linear free vibration of 
thin rectangular nanoplates with various boundary conditions 
based on non-local theory using Jacobi elliptic functions.

Nowadays MD simulations are widely used for modeling *Corresponding author’s email: ziaee@yu.ac.ir
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the mechanical and thermal properties of nanoscale materials 
[14, 16-18]. Sen et al. [3] combined molecular dynamics and 
experimental data to studying the tearing of graphene sheets 
from adhesive substrates. Their research was also including 
the observation of the formation of tapered graphene 
nanoribbons. It has shown that tearing of graphene sheets 
leads to tapered nanoribbons by means of experimental 
studies and atomistic simulations [19]. Scarpa et al. [4] used 
an equivalent atomistic continuum Finite Element (FE) model 
and a molecular mechanics model based on the Universal 
Force Field (UFF) potential to simulation of the mechanical 
vibration, natural frequencies and acoustic wave dispersion 
characteristics of graphene nanoribbons.

Thermal effect has one of the most important roles on 
the vibration behaviors of structures in macro and also nano 
scales such as nanotubes and nanoplates. If the temperature 
of the plate is raised or lowered it expands or contracts, 
respectively. Within a certain temperature change, such 
expansion or contraction, for most structural materials, is 
directly proportional to the change in temperature. When a 
free plate made of homogeneous isotropic material is heated 
uniformly, there appear normal strains but no thermal stresses 
[20]. But for the case of graphene, considering thermal 
effects is very important [21]. Researchers showed that the 
thermal effects on the mechanical behaviors of the carbon 
nanotubes are obvious [22]. Wang et al. [23] showed that the 
vibration properties can be tuned by the thermal effects and 
the influences on the vibration behaviors are usually different 
for different modes. Na and Kim [24] investigated three-
dimensional thermal buckling and postbuckling analyses of 
Functionally Graded (FG) materials subjected to uniform 
or non-uniform temperature rise for fully clamped plates by 
using finite element method. Nonlinear vibration behavior 
of a simply supported, single and bilayer graphene sheet in 
thermal environments is analyzed by Shen et al. [25,26].

Investigation of vibration around a buckled configuration 
at large scale is reported in some researches. Yamaki and 
Chiba [27] proposed theoretical analyses for nonlinear 
vibrations of a clamped rectangular plate with the effects 
of both initial deflection and initial edge displacement. 
The influence of initial deflections are also investigated 
for analysis of large deflection orthotropic plate under 
combined biaxial compression/tension and lateral pressure 
loads, considering the overall (grillage) buckling collapse 
mode [28]. Nayfeh and Emam [29] introduced an exact 
solution for stability and postbuckling configurations of 
beams with various boundary conditions. They showed that 
many internal resonances might be activated among the 
vibration modes around the same as well as different buckled 
configurations. In nano scale, there are many researches 
about buckling and vibrations separately and few of them are 
about vibration around a buckled configuration. Refaeinejad 
et al [30] used a nonlocal higher order shear deformation 
beam theory to present an analytical solution for bending, 
buckling and vibration of FG nanobeams. An isogeometric 
vibration analysis of small-scale Timoshenko beams based 
on a novel size-dependent theory is investigated by taking 

the nonlocal and strain gradient effects into account [31]. 
Nonlinear resonant behavior of microbeams over the buckled 
state is investigated by employing Hamilton’s principle along 
with the modified couple stress theory [32]. In their research, 
the Galerkin scheme is used to discretize the nonlinear 
partial differential equation of motion into a set of ordinary 
differential equations. These sets of equations are solved 
numerically employing the pseudo-arclength continuation 
technique.

There are a large number of papers dealing with the 
analysis of buckling, postbuckling and vibration problems; 
however, to the authors’ knowledge, there are few solutions 
for vibration analysis of buckled beams and buckled plates 
especially those due to thermal effects. Also, investigation 
of thermally buckled beam and plate vibration at large scale 
is noteworthy in some researches but is less seen for small 
scale such as nanobeams and nanoplates. So inquiries about 
dynamic behavior of nanoplates in various types and cases 
around a thermally buckled state are still open for research.

In the present research, a nonlocal plate strip model 
to study the vibration behavior of thermally postbuckled 
monolayer GNR is proposed. The governing equations are 
based on classical thin plate theory with a von Karman-
type of nonlinearity and containing small scale effects. The 
thermal effects are also included and the material properties 
are assumed to be orthotropic and temperature-dependent. 
The stability analysis around the buckled configurations is 
considered. The effects of variation of small scale parameter 

ae0   to the natural frequencies, deflections and mode shapes 
of GNR are analyzed, and the numerical results are obtained 
from the nonlocal plate model and some molecular dynamics 
simulations. The numerical illustrations show linear vibration 
response of Single Layer Graphene NanoRibbons (SLGNRs) 
under two side clamped and different sets of thermal, 
environmental and dimensional conditions.

It is also valuable to say that this research is useful for 
further investigating and analyzing the complex and non-
linear dynamics of postbuckled GNR in presence of internal 
resonance.

2. Theoretical Formulation
2.1. Deriving the primary equations of motion

A plate strip with length a and the Cartesian coordinate 
are considered for modeling the nanoribbon; also, the origin 
of the coordinate system is located in the middle of the strip 
as shown in Fig. 1.

Based on Eringen’s [11,12] nonlocal elasticity theory, 
size effects are taken into account by the integration of a 
scale parameter into classical continuum models. In nonlocal 
elasticity theory, the stress at a reference is assumed to be a 
functional of the strain field point in the body. According to 
nonlocal elasticity theory, the nonlocal constitutive behavior 
of a Hookean solid is represented by the following differential 
equation [12]:
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where θθ sin,cos == sc  and 
ijE  is the skew angle 

with respect to the plate x  axis. Also, it is assumed that the 

effective Young’s moduli ijE  are temperature-dependent.
When ,0=θ  the type of graphene sheet is called armchair 

and for  ,90 =θ  90^  its type is called zigzag.
The complete derivation of motion equations for 2D 

plates is accessible in the reference books [20,33]. For the 
plate strip case in which all derivatives with respect to y are 
equal to zero, by exerting material constants of graphene and 
nonlocal effects, the final equations of motion are simplified 
as following:
x-direction:

z-direction:

where P  is the lateral load and 20 , II  are mass moment of 
inertias and defined as:

2.2. Postbuckling equations 
Using the linearized buckling analysis, only the initial 

elastic buckling of nanoplates and the critical forces and 
stresses can be found [20]. By considering the postbuckling 
analysis, a different behavior of nanoplate is revealed. The 
equilibrium configuration is divided into stable and unstable 
states and the critical points are observed which denoted the 
borders of two mentioned regions. 

For mathematical analysis, a relation between 
compressive axial forces due to thermal loads and deflection 
must be calculated. This connection is usually in the form of 
parabolic function for a rectangular nanoplate and changes 
with variation of modes. Substituting time dependent terms 

Here µ  is the nonlocal parameter, lσ  is the local stress 
tensor and nlσ  is the nonlocal stress tensor. Also 2∇  is 
Laplacian operator in 2D Cartesian coordinate system. 

Let U, W be components of the displacement vector of 
points in the middle surface of the plate occurring in the x 
and z directions, respectively. The displacement field for a 
postbuckled rectangular nanoplate is defined as following:

The capital letters represent the total displacements, small 
letters with the zero subscript introduces the displacement 
components of middle surface for postbuckled state 
(static problem) and small letters without subscript are for 
displacement components due to vibration.

Based on von Karman-type nonlinearity, the nonlinear 
strain components in the plate middle surface in postbuckled 
state are:

The thermal forces TN  and moments TM  caused by 
elevated temperature are defined by [25]:

And

In which ijE  are the transformed elastic constants, defined 
by [25]:

Fig. 1. Geometry of the nanoribbon
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Fig. 1. Geometry of the nanoribbon 
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Fig. 2. Relation between the natural frequency and the scale coefficient with  

the high temperatures for mode I and T = 700 K. 
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in primary equations of motion equal to zero and eliminating 
lateral load P yields:
x-direction:

z-direction:

But from the equation of motion in x-direction and by 
considering 0/,0/ =∂∂=∂∂ ty  it is observed that 0/0 =∂∂ xN xx  
or cteKNxx ==0  ; So:

And by considering plate strip case ( )0/ =∂∂ y  yields

Then by supposing material properties reported in 
reference [25], the axial load 0

xxN  is:

Hence, substituting Eq. (14) into Eq. (12) and 
simplification yields:

Investigating the applications of nanoribbons reveals 
that they are extensively used for very sensitive tools and 
refined sensors such as nano resonators and mass detectors 
that commonly are mounted in two sided fixed (or clamped) 
configuration [5, 34-35]; So, the solution of the problem is 
reported for this type of boundary condition. In this case, all 
boundary conditions are displacement boundary conditions 
and thus do not rely on the constitutive relations. The 
boundary conditions for a two side clamped plate strip are:

where a is the length of GNR and coordinate center is 
placed in the middle (Fig. 1). For seeking an approximate 
solution, variational or energy methods are usually used. 
Two well-known energy methods are Galerkin and Ritz [33]; 
Among these two methods, the Galerkin method is more 
general, because it doesn’t need any quadratic functional nor 
virtual work principle [20]; Moreover, this method can be 
applied successfully to diverse types of problems of applied 
elasticity including the plate bending problems and so is used 
for the rest of the calculations.

One admissible form for satisfying the above boundary 
conditions is:

where j is the degree of freedom in both directions. 
Galerkin formulation is [33]:

Here ( )xN
iΨ  are the admissible shape functions, iu  are 

components of displacement and   is the left hand side of 
governing equations. Applying the Galerkin method to 

Eqs. (10) and (15) and  NΓ  using Eq. (17) yields the long 
formulation system of nonlinear algebraic equations that 
reported in Appendix A.

Eq. (A1) is a system of 2j nonlinear equations with 2j  
unknown functions. Solving these equations, the displacement 
components are achieved. This system is solved by Newton 
method which is highly efficient for the solution of nonlinear 
algebraic equations. For getting the final results, initial 
guess is set to linear solution of the system equations and by 
repetition of the method, final solution is obtained.

2.3. Stability analysis
In this section, the dynamic stability of a buckled 

configuration is investigated. For this purpose, a small 
dynamic disturbance around the buckled configuration 
is considered. After calculations of displacements due 
to buckling state, the total components of displacements 
and natural frequency of nanoribbon are computable. By 
considering postbuckling solution, primary equation of 
motion in z-direction is simplified as following:
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Again by considering plate strip case ( )0/ =∂∂ y   yields:

Then using Eq. (14):

But from equation of motion in x-direction and by 
differentiating yields:

So

Substituting into Eq. (19) results in:

For the case of linear vibration, by using material 
properties of a monolayer graphene sheet reported in reference 
[25], neglecting the nonlinear terms and after substitution and 
simplifications, the following equations are achieved in x and 
z-direction:

Again applying the Galerkin method to Eq. (25) and 
supposing ( ) ( ) titi exwwexuu ωω == ,  in which ω  is the natural 
frequency where:

Yields the long formulation system of nonlinear algebraic 
equations that reported in Appendix B.

Eq. (B1) is a system of   nonlinear equations with   
unknown functions. Solving this system of equations by 
Newton method, the displacement components due to 
vibration are achieved.

Eq. (B1) also represents an eigenvalue problem for ω
. For a stable buckled configuration, 2ω   must be positive 
[29], and hence ω   is real. To investigate the stability of 

the buckled shapes, according to reference [29] letting T
xq  

be a little greater than critical buckling load (for example 
T
xcr

T
x qq 001.1=  ) and exploring concerned physical mode 

shape, the stable and unstable positions are revealed. 

3. Molecular Dynamics Simulation
One of the most famous numerical methods for analysis 

of nano structures is the molecular dynamics simulation. This 
method is relevant to the interaction between the atoms and 
molecules in a large system [36]. Employing this method 
is successful if the true and accurate potential function is 
selected.

In the present work, all simulations are performed using 
the molecular dynamics simulator “Lammps”. Lammps 
is a free open source MD simulator which has suitable 
features that can be used to model different mechanical and 
thermal loading conditions of nanostructures. To modeling 
of two sides clamped boundary conditions, four layers of 
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carbon atoms should be fixed at two parallel sides of the 
graphene sheet [36]. To explain the long-range van der Waals 
interaction (Lenard Jones terms), the short-range covalent 
C–C interactions and torsion interactions, the Adaptive 
Intermolecular Reactive Empirical Bond Order (AIREBO) 
potential [37] is accomplished. AIREBO is a potential energy 
which is widely used to describe mechanical properties of 
carbon-based nanomaterials such as graphene and carbon 
nanotubes. For beginning the MD simulation, the nanoribbon 
is optimized initially and relaxed to reach the minimum 
energy configuration; also, the effective thickness h=0.34 
nm  is used for analysis. After simulating the boundary 
conditions appropriately, the natural frequencies of SLGNR 
are calculated at different temperatures. Then, by adapting the 
results obtained from theoretical method and MD simulations, 
the small scale parameter is achieved at different thermal 
environmental conditions. Numerical quantities of  e0a for 
some temperatures and chirality conditions are reported in 
numerical section.

4. Verification
In this section, first of all, convergence for present 

approach is investigated; then, vibration behaviors of a 
postbuckled aluminum plate strip subjected to an axial load 
and with two clamped edges are analyzed. 

To show the rate of convergence for present approach, the 
Galerkin results of critical buckling temperature for different 
scale parameters and some number of basic functions are 
listed in Table 1. The numerical results in Table 1 are obtained 
for orthotropic single-layered zigzag graphene nanoribbon. A 
fast rate of convergence of the present approach is evident for 
all values of scale parameters. Also, more investigation of the 
results reveals that 3 terms of basic functions are suited for 
using in calculations.

Although in present work only the thermal load is 
considered and physical axial load is not presented, but effect 
of the thermal load ( )T

xxN  is comparable with the axial load 

( )0, xxxx NN  with the aid of Eqs. (14) and (23). In both cases, 
these loads become apparent only in the in-plane load term 
of motion equation. Material properties used in verification 
process are represented in Table 2. Results are displayed in 
Table 3 and show that there is close agreement between the 
results of the present approach (for 3 terms of basic functions 
used for calculation) and those of separation of variables 
method [38].

For the rest of the calculations, a zigzag single layer 

graphene nanoribbon with temperature dependent material 
properties is investigated. The numerical quantities of 
material properties are deduced from reference [25]. For 
further inspection of the method, the relation between the 
natural frequency and the scale coefficient is plotted in Fig. 
2 for vibration around the first buckled configuration and 
compared to exact solution method suggested by reference 
[29]. Again 3 terms of basic functions are used for calculation.

Verification studies for MD simulations involving both 
buckling and vibrational studies are displayed in Fig. 3 and 
Table 4. 
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Table 1. Convergence study for the Galerkin method. 
 

Scale 
parameter 

(e0a) 

Number of basic functions used for calculation of critical 
buckling temperature 

1 2 3 4 5 
0.0 395.21 394.37 393.42 393.42 393.42 
0.5 383.54 382.63 381.09 381.09 381.09 
1.0 366.62 364.93 363.05 363.05 363.05 
1.5 349.08 347.64 346.21 346.21 346.21 
2.0 333.02 331.43 330.07 330.07 330.07 
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Fig. 1. Geometry of the nanoribbon 
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Fig. 2. Relation between the natural frequency and the scale coefficient with  

the high temperatures for mode I and T = 700 K. 
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5. Numerical Results
5.1. Postbuckling results

After estimating the accuracy of the method, the numerical 
results are presented. The following material properties are 
used for the calculations:

For determination of the critical temperature, the thermal 
buckling analysis is carried out. From Eq. (15), the thermal 

force T
xxN  was computed explicitly with respect to the 

function of  . Considering linear part of Eq. (15) and the 
related boundary conditions, the critical temperatures can 
be obtained by differentiating this equation and solving it 
numerically (Newton method). Fig. 4 gives the variation 
of the critical temperature gradient of clamped plate strip 
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under uniform temperature rise. Results show that critical 
temperature has reverse relation with scale parameter and as 
a result of employing the nonlocal theory, critical temperature 
is decreased.

After confirming the accuracy of the MD simulation in 
previous section, numerical studies are employed and results 
for postbuckling region are shown in the following:

The bifurcation diagram for the first three buckled 
configurations of a two side clamped GNR is plotted in 
Fig. 5, as the temperature is increased. As the thermal load 
exceeds the first critical buckling temperature, the nanoribbon 
loses stability and buckles. If the thermal load is increased 
beyond the second critical buckling temperature, nanoribbon 
has three positions: the one straight configuration and two 
buckled configurations. The stability of these positions is 
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Fig. 3. Fundamental critical buckling load per width ratio of a Zigzag Graphene NanoRibbon (ZGNR)  

versus length for the fixed–fixed boundary conditions. 
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Fig. 4. Critical temperature gradient with respect to a/h under uniform temperature rise. 
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determined in the next section.
Fig. 6 shows the comparison between the bifurcation 

diagrams of the system obtained via the nonlocal and the 
classical theories. It is seen that as a result of taking into 
account the scale parameter (i.e. employing the nonlocal 
theory), the beginning of bifurcation is transferred to a lower 
temperature and it shows the importance of employing the 
nonlocal theory in the modeling of nanoribbons.

The numerical results for postbuckled zigzag GNR are 
given for different modes and nonlocal parameter (Fig. 7). 
In this figure the non-dimensional deflection of postbuckled 
clamped plates are depicted. It can be easily seen that 
increasing nonlocal parameter increases the non-dimensional 
deflection at the different points of the plate strip.

5.2.  Stability and vibration results
After representing the accuracy of the formulation, a 

parametric study of the frequency for the linear vibration of 
thermally postbuckled monolayer GNR is presented.

For determining the stability, the method suggested 
in section 2.3 is used. Investigations showed that for the 
first buckled configuration, all of the positive roots of ω  
correspond to physical mode shapes. As a result, the first 
buckled configuration is a stable equilibrium position. 
However, further examinations showed that the upper modes 
of buckled configurations from mode II to V have unstable 
equilibrium position.

In continuation, a parametric study is carried out to show 
the effects of the nonlocal parameter in conjunction with 
the geometrical and material parameters on the vibration 
characteristics of the monolayer GNR. 

In Fig. 8 the effects of scale parameter for instance on the 
first mode of plate vibration with increasing temperature is 
shown and indicates that without considering nonlocal effects, 
critical points and the solution are completely different.

In Figs. 9 to 11, variation of the vibration frequencies 
around the first three buckled configuration with the 
temperature is presented. Solid lines indicate odd vibration 
modes and dotted lines indicate even ones. This figure 

Fig. 5. Bifurcation diagram of the system with temperature rise.
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Fig. 6. Comparison between the bifurcation diagrams of the system obtained via nonlocal and classical 
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Fig. 7. Effects of nonlocal parameter on different mode shapes of postbuckled GNR, 

solid lines for 0 , dashed lines for 1  and dotted lines for 2 . 
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Fig. 8. Effects of nonlocal scale parameter in the evolution of natural frequency with increasing 

temperature before and after buckling of ZGNR for mode I. 
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shows that internal resonances, such as one-to-one, two-to-
one, and three-to-one, might be activated between vibration 
modes around the buckled configuration. For example, a 
one-to-one internal resonance might be activated at T=639K, 
978K around mode I, III respectively and also two-to-one at 

T=456K around mode II. Also, further inspection indicates 
that a three-to-one internal resonance might be activated at 
T=437K around mode II and also two-to-one at T=779K 
around mode III.

The vibration modes around the first buckling mode of 
plate are shown in Fig. 12.

MD simulation results for frequency calculations are 
shown in Table 6 and Fig. 13.

5.3. Chirality effects investigation
Fig. 14 shows the effects of temperature change on 

the vibration amplitude of the two types of postbuckled 
monolayer GNR for a/h=50. It can be seen that under the 
same thermal environmental condition and for the same 
aspect ratio, the armchair sheets will have lower natural 

Fig. 12. Three first modes of vibration around the postbuckled state.
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Fig. 9. Variation of the natural frequencies of vibration around the  

1st buckled configuration of a two side clamped ZGNR 
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Fig. 13. Fundamental frequencies of clamped zigzag single-layered graphene nanoribbon 

 

 

 

 

 

 

 

 

 

 

Fig. 14. Comparison between linear frequencies aroused from vibration around third buckling mode of 
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frequencies than those of zigzag sheets. This difference is 
due to different chirality and heteromorphic structure of two 
mentioned sheets.

More investigations on chirality effect are shown in 
Figs. 15 and 16. According to these figures, critical buckling 
temperature is negligibly influenced by chirality for a given 
graphene nanoribbon; also, results show that the chirality has 
an important influence on the natural frequencies at higher 
modes of vibration.

6. Conclusion
In this research, vibration response of postbuckled 

monolayer graphene nanoribbon has been investigated on the 
basis of a nonlocal plate strip model and MD simulation for 
two side clamped boundary condition. The major difference 
between present model and previous ones in literature is 
that the present solution includes the deflection caused by 

thermal postbuckling. Solution of the problem is posed into 
two phases, one is the thermally equilibrium phase (static 
problem) and another one is the small amplitude vibrations 
around the static response. In thermal postbuckling analysis, 
the bifurcation-type buckling behavior is observed and a 
thermal postbuckling equilibrium path is obtained. The 
complete formulation of nonlinear vibration of postbuckled 
GNR is presented and by neglecting the nonlinear terms, 
solution of linear vibration is introduced by solving a 
system of nonlinear algebraic equations. A stability analysis 
is also considered using an Eigen value problem in terms 
of frequency. By using MD simulations, some calibrated 
small scale coefficients are obtained for both vibration and 
postbuckling analysis. The effect of chirality on the buckling 
temperature, modes and vibration behavior of nanoribbon 
under similar thermal environmental and dimensional 
condition by considering two types of zigzag and armchair 
GNR is analyzed. The numerical results show that although 
the critical buckling temperature is negligibly influenced 
by chirality, its effect on vibration behavior is remarkable. 
Also results show that the armchair sheets will have lower 
natural frequencies than those of zigzag sheets when the two 
sheets have the same dimensional properties and thermal 
environmental condition; also, this effect is highlighted more 
on higher modes. The stability analysis reveals that the first 
buckling mode is a stable equilibrium position; whereas, 
buckled configurations beyond the first bucking mode are 
found to be unstable equilibrium positions. It also reveals 
that many internal resonances might be activated among 
vibration modes around the same buckled configuration for 
the case of fixed-fixed plate strip. Effect of scale parameter 
on the different quantities such as natural frequency, critical 
temperature and mode shapes is investigated. It is seen that 
as a result of employing the nonlocal theory, the beginning of 
bifurcation is transferred to a lower temperature; consequently, 
taking into account the length scale parameter decreases the 
flexural stiffness of the system and hence precipitates the 
onset of the bifurcation. Also, increasing nonlocal parameter 
increases the nondimensional deflection of the plate strip. 
By increasing temperature, the natural frequencies have 
two opposing behaviors; decreasing before buckling state 
and increasing after buckling state. Also considering scale 
parameter has two different effects, by increasing temperature 
before buckling, considering scale parameter decreases the 
natural frequency whereas in postbuckled state, it increases 
the natural frequency. The results shows that scale parameter 
and temperature change have a significant role on linear 
vibration of postbuckled nanostructures. These results also 
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Table 4. Resonant frequencies of clamped zigzag single-layered graphene sheets. 
 

MD (THz) 
Present study 

MD (THz) 
reference [36] 

Side length of square 
SLGS (nm) 

0.1147461 0.1146223 10 
0.0519233 0.0517078 15 
0.0311567 0.0306219 20 
0.0180037 0.0179975 25 
0.0134090 0.0132953 30 
0.0104284 0.0104182 35 
0.0081272 0.0081090 40 
0.0069476 0.0067681 45 
0.0058614 0.0056362 50 

 

: 

Table 5. Critical buckling temperature of clamped zigzag single-layered graphene nanoribbon (K). 
 

MD (K) 
Present 
study 

Nonlocal continuum model (K) 
(The values of correspondent 

e0a are in parenthesis.) 

Side length of 
SLGNR (nm) 

611.24 611.57 (1.934) 5 
319.67 320.04 (0.598) 8 
233.14 233.69 (0.201) 11 
206.21 205.87 (0.147) 14 
190.26 189.74 (0.101) 17 

 

. 

Table 6. Resonant frequencies of clamped zigzag single-layered graphene nanoribbon. 
 

MD (GHz) 
Present study 

Nonlocal continuum model (GHz) 
(The values of correspondent e0a are in parenthesis.) 

Side length of 
SLGNR (nm) 

2.2239 2.2241 (1.934) 5 
1.3142 1.3148 (0.598) 8 
0.7438 0.7440 (0.201) 11 
0.3912 0.3905 (0.147) 14 
0.2565 0.2552 (0.101) 17 

 

 

Table 6. Resonant frequencies of clamped zigzag single-layered graphene nanoribbon.

Fig. 16. Natural frequency of single-layered GNR with clamped 
edge and different chirality
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Fig. 15. Comparison between critical buckling temperatures 

for two cases of zigzag and armchair GNR 
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open the door for further investigations into the complex and 
non-linear dynamics of postbuckled GNR.

Appendix A: Postbuckling equation
The algebraic equation arising from the Galerkin 

integration (Eq. (18)) for the postbuckling case is:

Appendix B: Vibration equation
The algebraic equation arising from the Galerkin 

integration (Eq. (18)) for the vibration case is:
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