AUT JOURNAL OF i
MECHANICAL
ENCINEERING

AUT Journal of Mechanical Engineering

AUT J. Mech. Eng., 2(2) (2018) 191-206
DOI: 10.22060/ajme.2018.13562.5669

Nonlinear Free Vibration of Buckled Size-Dependent Functionally Graded Nanobeams
Using Homotopy Perturbation Method

S. Ziaee", S.A. Mohammadi®

! Department of Mechanical Engineering, College of Engineering, Yasouj University, Yasouj, Iran
2 Department of Mathematics, College of Sciences, Yasouj University, Yasouj, Iran

Review History:

Received: 17 October 2017
Revised: 15 December 2017
Accepted: 31 January 2018
Available Online: 20 February 2018

ABSTRACT: The present study aims at investigating nonlinear free vibration of thermally buckled
functionally graded nanobeam. The nonlocal nonlinear Euler-Bernoulli beam theory as well as linear
eigenmodes of a functionally graded nanobeam vibrating around the first buckling configuration are employed
to derive a system of ordinary differential equations via the Galerkin method. Semi-analytical solutions are
obtained based on both the homotopy perturbation method and the variational iteration method. Results show
that the difference between nonlinear and linear frequencies increases with a rise in the maximum lateral initial
deflection, small scale parameter value, and index of the power law. Investigating the effect of the ratio of
length to thickness on the variance between the nonlinear and linear frequencies shows that the aspect ratio
makes no difference on the classical ratio of nonlinear to linear frequencies although the difference between
the nonlocal nonlinear and linear frequencies decreases with a rise in the aspect ratio. In contrast to the ratio
of the first nonlinear frequency to the first linear one which will decrease if compressive axial load increases,
the values of the compressive axial load which are beyond the load bearing capacity of the functionally graded
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nanobeam do not affect the ratio of the second nonlinear to linear frequencies.

Variational iteration method

1- Introduction

The unique characteristics of Functionally Graded Materials
(FGM) resulting from the smooth and continuous variation
of properties along certain dimensions have made them the
notable materials which can be used in many engineering
application fields [1]. The growing development of
technology provides the possibility of using FGM thin
beams in micro/nano-electro-mechanical systems, such as
electrically actuated devices and atomic force microscopes
[2], thus the study of mechanical behavior of Functionally
Graded (FG) micro-/nano-structures has recently become a
topic of interest to researchers.

The importance of incorporating the size effect into continuum
mechanics in order to investigate the mechanical behavior of
micro- or nano-scale devices, is well known and higher-order
continuum theories containing additional material constants
have been developed to this end [3, 4]. Strain gradient
theory, modified strain gradient theory, couple stress theory,
modified couple stress theory, nonlocal elasticity theory,
surface elasticity theory, and nonlocal-strain gradient theory
are some of the famous higher-order continuum theories
employed by researchers to investigate mechanical behavior
of size-dependent structures.

On the basis of the strain gradient Timoshenko beam theory,
the free vibration characteristics of functionally graded
microbeams were investigated by Ansari et al. [S]. Ansari
et al. [6] also combined the most general strain gradient
elasticity theory containing five additional material length
scale parameters with the classical Timoshenko beam theory
to investigate the bending and buckling of functionally graded
microbeams. Using the strain gradient theory, Setoodeh

Corresponding author, E-mail: ziace@yu.ac.ir

191

and Afrahim [7] incorporated the size effect into nonlinear
Euler—Bernoulli beam theory and studied the size dependent
nonlinear vibration behavior of functionally graded micro-
pipes conveying fluid. Ghorbani Shenas et al. [8] investigated
the effects of the geometrical design parameters of pre-twisted
microbeams in thermal environment based on modified strain
gradient theory.

Ghorbanpour Arani et al. [9] studied the nonlinear vibration
of a nanobeam coupled with a piezoelectric nanobeam based
on the strain gradient theory.

Reddy [10] employed a modified couple stress theory to
derive the nonlinear non-classical Timoshenko and Euler-
Bernoulli beam theories to study static bending, free vibration,
and buckling of FG hinged micro-beams. These theories were
used to investigate the nonlinear bending response of clamped
FG micro-beams under mechanical loadings by Arbin and
Reddy [11] as well.

Ansari et al. [5] compared two different beam models
on the basis of the modified couple stress theory and the
strain gradient theory in predicting the natural frequencies
of functionally graded microbeams. They showed that the
value of natural frequency predicted by strain gradient theory
is higher than that predicted by the modified couple stress
theory. The differences in predicting load-bearing capacity
and lateral deflection of functionally graded microbeams
between various beam theories derived according to modified
couple stress theory, strain gradient theory and modified
strain gradient theory are studied by Ansari et al. [6] as well.
The comparison studies between the strain gradient theory
and the couple stress theory done by Setoodeh and Afrahim
[7] showed that the former induces a higher stiffness.
According to the nonlocal elasticity theory hypothesis,
Eltaher et al. [12, 13] and Simsek and Yurtcu [2]
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independently employed nonlocal Timoshenko beam theory
[12, 2] and nonlocal Euler-Bernoulli beam theory [13, 2]
to study the static bending and buckling of FG nanobeams
with different boundary conditions. Eltaher et al. [14] studied
free vibration of FG nanobeams based upon nonlocal Euler-
Bernoulli beam theory and finite element method. The effects
of neutral axis location on linear natural frequencies of FG
macro-/nanobeams were investigated by Eltaher et al. [15,
16] as well. Uymaz [17] used generalized beam theory and
the nonlocal elasticity to present forced vibration of FG
nanobeams. Nonlinear free vibration of FG nanobeams was
studied by Nazemnezhad and Hosseini-Hashemi [18] based
on nonlocal Euler-Bernoulli beam theory and multiple scale
method. Using nonlocal Timoshenko beam theory, Rahmani
and Pedram [19] investigated the effects of gradient index
and geometrical dimensions on linear free vibration of FG
nanobeams. He’s variational method and nonlocal Euler—
Bernoulli beam theory were used to study the large amplitude
free vibration of FG nanobeams resting on nonlinear
elastic foundation by Niknam and Aghdam [20]. Kiani [21]
proposed a mathematical model to investigate the vibration
and instability of moving FG nanobeams based on nonlocal
Rayleigh beam theory. Obtained results clearly showed that
the value of small scale parameter is an important factor to
accurately estimate dynamic responses of FG nanobeams
although boundary conditions, order of the mode of
vibration, and geometrical dimensions can affect the role of
the small scale parameter in simulating dynamic responses
of FG nanobeams. Ziaee’s study on the effect of small
scale parameter on linear vibration of thermally buckled
FG nanobeams showed the important role of compressive
axial force exerted on FG nanobeams in nonlocal behavior
of vibrating FG nanobeams [22]. Ebrahimi and Salari
[23] employed nonlocal Euler-Bernoulli beam theory to
investigate the effect of different parameters such as small
scale parameter effects, different material compositions, mode
number, and the ratio of length to thickness on the normalized
natural frequencies of the simply supported FG nanobeams.
They also used nonlocal Timoshenko beam theory [24] and
nonlocal Euler-Bernoulli beam theory [25, 26] to investigate
free vibration of functionally graded nanobeams subjected
to an in-plane thermal loading. They showed that thermal
effect and boundary conditions affect the vibration behavior
of FG nanobeams significantly. Gourbanpour Arani et al.
[27] used the nonlocal nonlinear Timoshenko beam theory
to study the nonlinear vibration of embedded single-walled
boron nitride nanotube under imposed electric potential and
thermal loading. They found that the magnitudes of nonlinear
frequency are more than the magnitudes of linear one. Also,
they showed that the effects of Winkler elastic parameter
and Pasternak shear modulus on the fundamental frequency
are approximately the same. The nonlinear vibration of
functionally graded nanobeams resting on a nonlinear elastic
foundation has been simulated by Trabelssi et al. [28] on
the basis of nonlocal Euler-Bernoulli beam theory. Based
on similar theory, Lv and Liu [29] studied the nanomaterial
uncertainties on linear vibration and static stability of
functionally graded nanobeams in thermal environment.

Because the surface to volume ratio of nano-structures is high,
Hosseini-Hashemi et al. [30] studied nonlinear free vibration
of simply-supported functionally graded nanobeams in the
presence of the surface effects via nonlocal nonlinear Euler-
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Bernoulli beam theory. Their investigations clearly revealed
that surface effects and nonlocal parameter have an opposite
impact on the ratio of fundamental frequencies. Zhang et
al. [31] investigated the influence of surface and thermal
effects as well as small scale parameter on the flexural wave
propagation of piezoelectric functionally graded nanobeam.
Their study showed that the temperature effects on the phase
velocity and group velocity are remarkable for wave number.
Barati [32] employed He’s variational method to investigate
different parameters such as temperature change and
elastic foundation on nonlinear frequency of a flexoelectric
nanobeam incorporating surface elasticity.

After introducing the higher-order nonlocal strain gradient
theory by Lim et al. [33], the researchers investigated the
nonlinear vibration behavior of size-dependent functionally
graded beam in the framework of simplified nonlocal strain
gradient theory [34, 35].

Although it is well known that proper values of the nonlocal
parameter must be used if the accurate study of mechanical
behavior of micro/nanostructures is desired, a thorough
research has not been done to estimate the value of small
scale parameter corresponding to mechanical response of
functionally graded micro-/nanobeams so far [18]. Hence,
all researchers who used nonlocal continuum theories
to simulate size-dependent mechanical behavior of FG
nanobeams investigated the effects of small scale parameter
on mechanical behavior of FG nanobeams by changing the
value of the small scale parameter [14-18].

As it is known, thermal stress due to the temperature
rise in micro/nanobeams with immovable ends produces
compressive axial force which can lead to buckling the beams
if its value increases over the critical value [36]. Therefore, the
investigation of dynamical behaviour of thermally buckled
micro/nanobeams, especially FGM micro-/nano- beams to
improve the thermal resistance of micro-/nanobeams, is of
great importance [22].

Sun et al. [37] used the multiple scaled Lindsted-Poincare
method to study the free vibration of simply supported
nanobeam around its buckled configuration. They estimated
the first nonlinear frequency and evaluated the effects of the
magnetic field and initial vibration amplitude on the nonlinear
frequency [37]. Sahmani and Aghdam [38] simulated the
nonlinear vibration of postbuckled multilayered functionally
graded simply-supported nanobeams. To this end, they
incorporate the nonlocal-strain gradient theory into third order
shear deformable beam theory to obtain governing equations
of motion and employed an improved perturbation method
in conjunction with Galerkin method to solve the equations.
Based upon the author’s knowledge, there is no notable
study on nonlinear vibration of thermally buckled fully fixed
FG nanobeams. So, the investigation of the effects of small
scale parameter on nonlinear frequencies of fully fixed FG
nanobeams is the main purpose of this article. The variation
of material property graduated in the thickness direction is
modeled according to the simple power-law distribution.
Euler-Bernoulli beam theory, von-Karman geometric
nonlinearity and Eringen’s nonlocal elasticity theory are
employed to derive the partial differential equation of motion.
The Homotopy Perturbation Method (HPM) and variational
iteration method are employed to find the first and the second
approximation of nonlinear frequencies as well as response
of FG nanobeams. In the parametric studies of this work, due
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to lack of information, small scale parameter (e,a) is varied
between 0 to 2 nm to investigate the effects of small scale
parameter on response of vibrating buckled FG nanobeams.

2- Equation of Motion
The governing equation of nonlinear vibration of fixed-
fixed FG nanobeams with length L, width b, thickness /&
and immovable ends can be obtained as follows [22] (see
appendix A for details):
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R Y WE Wa ) “ |
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D, L2 0 dx ox dxt
2 2
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(1)
[ 2D, L2 0 j J
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A
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in which
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where W (x) and V=V(x,7) are the buckling configuration
of nanobeam and the dynamic disturbance, respectively.
p,, £ and a, (i=1, 2) are mass density, Young modulus and
coefficient of thermal expansion of the two materials used
in construction of FG beam, respectively. n represents the
power-law index. The cross section area and the gyration
radius of the cross section of the beam are shown by 4 and r,
respectively. z, denotes the distance of the neutral surface of
the FG nanobeam from the mid-plane of the FG nanobeam. # is
time. Also; e a represents the material length scale parameter
including material constant and internal characteristic length.
The temperature change is shown by AT(z).

The buckling mode shape of fixed-fixed FG nanobeams
was reported by Ziaee [22]. The buckling mode shape
corresponding to the smallest value of buckling load is [22]:

o I
* _V(Aurz/4Dn)( 71') +((60a A.r /4D»0L )(271’)4

(l—cos(2m?)) 4)

It is worth mentioning that if one sets the expression under
the square root in Eq. (4) equal to zero, the critical value of
N, i.e. the thermal buckling load (N, ) will be obtained [22].

To find the nonlinear response of vibrating buckled FG
nanobeam, one can express the solution of Eq. (1) in terms
of the linear free oscillation modes (y(x)) of buckled FG
nanobeams as follows (see Appendix B for details):

n

=>q. (1), (¥) (5)

i=l1

If the nonlinear terms of Eq. (1) are taken equal to zero, the
eigenvalue problem that governs linear free oscillation modes
can be found [22]:
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According to Galerkin method, one can obtain the system of
ordinary differential equations of motion as follows:

ZMjiq“i +ZKjiqi
i=l i=l

+ T 4.4, + >, Nid.4,9, =0

i,p=1 i,p.q=1

(7

Because of the orthogonality of linear free oscillation modes
of FG nanobeams, Eq. (7) is simplified to Eq. (8):

n
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in which
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M, and K can be found based on Eq. (9b) and Eq. (9¢) by
equatlng i =j, respectively. @, represents the dimensionless

frequency.

3- Homotopy Perturbation Method

To solve the system of ordinary differential equations shown
by Eq. (8), HPM is employed. Based on the concept of HPM,
a homotopy is constructed as follows [39]:

(1 _P)(‘j/ +0,q, )

" (10)
+P [q] +@,°q; + Z T,.4.9,+ A,-fpkq,-qquj=0

ip=1 ipok=1

where P€[0,1] . Itis also assumed that the solution of Eq (10)
and the frequency @’ can be expressed as a power series of
the homotopy perturf)atlon parameter P:
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q; :qj0+qul+P2qj2+ (11-a)

o =0, +Po,’ +P’®;, +... (11-b)
Substituting Eq. (11) into Eq. (10) and equating coefficients
like power of P, one can obtain the following equations:
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The solution of Eq. (12a) can be written in the following
form:

1 = e
450 =74, (exp(i @, )—i—CC),z =J-1 (13)
where CC stands for complex conjugate of the preceding
terms.

Substituting Eq. (13) into Eq. (12b) yields:
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To eliminate the secular terms of a particular solution of Eq.
(14), the coefficient of (i@ ¢ ) must be taken equal to zero. If
there is no internal resonance, the condition of eliminating
secular terms leads to

aﬁ,ﬁ‘g n AZ (A + Ay + A,»,-,-,-)—3

1

A2A .. (15)

Rt/

i=li#j 4

Substituting Eq. (15) into Eq. (11b) and equating the homotopy
perturbation parameter with 1, the first approximate solution
of ‘" nonlinear frequency of buckled FG nanobeam is
obtained:

CT)},?O:CT)?+%Z A?(A, +A.
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After eliminating the secular terms of Eq. (14), the solution of

Eq. (14) makes the first-order approximate solution of lateral
displacement of FG nanobeam:
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It should be noted that the singular terms must be eliminated
from Egs. (17) and (18) by selecting proper values of i, p,
and k.

If the /" mode shape of vibrating buckled beam is excited
(i.e. Aj #0and 4 = 0 where m #j), Egs. (16) and (17) will be
simplified as follows:
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To obtain the second approximation of nonlinear frequencies
of buckled FG nanobeams, after substituting the solution
of Eq. (14) into Eq. (12c¢), the secular terms of a particular
solution of Eq. (12¢) must be eliminated.

This second-order approximate solution of a buckled FG
nanobeam whose response is estimated by the first mode
shape of its linear vibration is:

_ _ _ _ _5\2
wlzo :_(wlzl_wlz)_ (50121_0’12) +4p (24)
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B, = &b A1r111_A12A1111 _5A12F2111
R 32 6 ’s
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4 64
3 5
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4- Variational Iteration Method

The variational iteration method is also used to estimate
nonlinear frequencies of buckled FG nanobeams. To this
purpose, Eq. (8) is arranged as follows [39]:

+Q q] - (qls sqn) (26)
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Based on the assumptions of variational iteration method, the
initial approximation of qj(‘” is (if qj(o)(O) =4, qj<°)(0) =0):

qjo) —%AJ (exp(z’iﬁjtf)+CC),

(28)
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and the formula which governs the ‘m™ iteration is:
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To eliminate secular terms from q“) the coefficient of
exp(zQ 7) in Eq. (30) must be taken equal to zero:
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The solution of Eq. (31) is the first-order approximate solution
of nonlinear frequencies of FG nanobeams.
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On the basis of iteration formula of variational method (Eq.
(29)) [39], the solution of ¢" can be obtained:
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It should be noted that the singular terms must be eliminated
from Eq. (33) by selecting proper values of 7, p, and k.

It can be seen that Egs. (32) and (33) conform to Egs. (16) and
(17) respectively.

If the ¢/ vibrating mode shape of buckled beam is excited
(i.e. AJ. #0and A =0 where m #j), Eqs. (32) and (33) will be
simplified as follows:
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Eliminating secular terms of F/.l, one can find the second-
order approximate solution of nonlinear frequencies.
The second-order approximate solution of a buckled FG
nanobeam whose response is estimated by the first mode
shape of its linear vibration is:

Z B+ Z2 0+ 72,00 +2,00 +7,=0 (39)
where
Zy=4,/2 (40-a)
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5- Validation

Sedighi and Daneshmand [40] formulated the first-order and
the second-order approximate solution of the first nonlinear
frequency of buckled beam based on homotopy perturbation
method with an auxiliary term. To use the results available
in [40], the index of power law and small scale parameter
are taken equal to zero. The obtained formulae for the first
nonlinear frequency of buckled beam are in good agreement
with those reported by Sedighi et al. [40]. The presented
formulae will estimate the pre-buckling nonlinear frequencies
of functionally graded nanobeams if thermal load is less than
the critical one. The ratio of the first nonlinear frequency to
the first linear one of isotropic beam reported by Fallah and
Aghdam [41], Pirbodaghi et al. [42], Qaisi [43] and Azrar
et al. [44] who used different methods to estimate nonlinear
frequencies of isotropic and/or functionally graded beams,
are compared with the presented data in Table 1. To make
this comparison, the small scale parameter value, the index
of power law and the axial load are taken equal to zero. As
can be observed, there is good agreement between the results.
The obtained ratio of the first nonlinear to linear frequencies
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of functionally graded beams are compared with those
reported by Fallah and Aghdam [41] as well and the obtained
maximum percentage difference is less than 1%.

6- Results and Discussion

In order to investigate the effects of different parameters
such as the aspect ratio, the small scale parameter and the
index of power-law on the vibratory behavior of the buckled
FG nanobeams, the governing algorithms are written in
MATLAT.

In the present study, nonlocal nonlinear Euler-Bernoulli beam
theory is used to simulate the nonlinear vibration of buckled
long and narrow (L/h>20) FG nanobeams because according
to Aydogdu’s study [45], the nonlocal Euler-Bernoulli beam
theory can predict mechanical behavior of nanobeams
accurately when length/thickness ratio of nanobeams is more
than 20 (L/A>20). Also, thermo-mechanical properties of
silicon nitride (Si,N,) and stainless steel-grade 304 (SUS304)
are also used in this section. It is assumed that the nanobeam
is constructed of pure metal when the power-law index (n)
is zero and with an increase in “n”, the volume fraction of
silicon nitride gradually increases in nanobeam.

As mentioned before, the first and/or the second
approximation of nonlinear dimensionless frequency of
buckled FG nanobeam represented by Eq. (16) or Eq. (32) is
not usable unless there are not any internal resonances. The
study on variation of natural frequencies of buckled beam
[46] and buckled FG nanobeam [22] with compressive axial
force showed that the one-to-one and three-to-one internal
resonances can be seen at the certain values of compressive
axial force. Ziace [22] showed that the values of compressive
axial force in which the interaction of the modes may exist
change with the material composition of FG nanobeam as
well as the small scale parameter. Hence, Eq. (16) or Eq. (32)
is applicable except for special cases. The variation of the
ratio of thermal load to critical axial load in which one-to-one
internal resonances may occur with small scale parameter,
index of power-law and the ratio of the length to the thickness
is listed in Table 2. The results shown in Table 2 clearly reveal
that thermal load to critical axial load ratio in which one-to-
one internal resonances may occur is independent of aspect
ratio and index of power law although it changes with small
scale parameter.

Previous studies [22, 45] also demonstrated that regardless of
the value of index of power law and small scale parameter, no
interaction of the modes exists as long as compressive axial
load is less than the value in which the one-to-one internal
resonance may occur. Hence, this study is limited to loading
domain mentioned above.

According to Eqs. (16) and (17), one can conclude that

Table 1. Comparison between the obtained ratio of nonlinear to linear frequencies and available data. “H” and “V” stand for
Hemotopy perturbation method and Variational iteration method respectively.

Present (First-
110.5,0) order approxi-

Present(Second- Present (Second-
order approximate order approximate Ref.[41] Ref.[42] Ref.[43] Ref. [44]

(W.=0) m(zll_:eaio(;u\t]l)(;n solution (H)) solution (V))
1 1.05696 1.05672 1.05672 1.055 1.0572 1.0628 1.0221
2 1.21190 1.20932 1.20939 1.2056 1.2125 1.2140 1.0856
3 1.43339 1.42542 1.42577 1.4214 1.4344 1.3904 1.1831
4 1.69555 1.68018 1.68105 1.6776 1.6171 1.5635 1.3064
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Table 2. The variation of the ratio of thermal load to critical axial load (V,/ N, ) in which one-to-one internal resonances may occur

Ter

n=0 n=0.3 n=0.6
e,a=0 e,a=1 e,a=2 e,a=0 e,a=1 e,a=2 e,a=0 e,a=1 e,a=2
L/h=30 3.4125 3.197 2.68 3.4125 3.197 2.68 3.4125 3.197 2.68
L/h=40 3.4125 3.287 2.96 3.4125 3.287 2.96 3.4125 3.287 2.96
L/h=50 3.4125 3.33 3.11 3.4125 3.33 3.11 3.4125 3.33 3.11
L/h=60 3.4125 3.355 3.195 3.4125 3.355 3.195 3.4125 3.355 3.195
L/h=70 3.4125 3.37 3.25 3.4125 3.37 3.25 3.4125 3.37 3.25
L/h=80 3.4125 3.38 3.287 3.4125 3.38 3.287 3.4125 3.38 3.287
A2 i
I tWs ]
— o
s s o
0 0.2 04 4/, 06 0.8 0 0.2 4 /L 06 0.8 1
(a) (b)

Fig. 1. Initial lateral deflection of buckled FG nanobeam

initial lateral deformation (7(x,0)) which can be expressed as
V(x,0)= ZN A v, significantly affects nonlinear frequency and
lateral response 'of buckled FG nanobeam. In this section, to
examine the influence of the initial lateral deformation on the
first and the second nonlinear frequency and the response of
buckled beam, two different initial excitations which can be
stated by the first or the second linear mode shape of vibrating
buckled beam are used (Fig. 1). As it is observed in Fig. 1,
A, and A, introduce the maximum lateral initial deflection
which must be measured from buckling configuration of FG
nanobeam.

Eq. (19) or Eq. (34) clearly shows the direct relationship
between the maximum lateral initial deflection and the
nonlinear dimensionless frequency. Based on those equations,
not only the ratio of the nonlinear dimensionless frequency
to the linear one tends to 1, if the value of Aj tends to zero,
but also one can observe the increasing the ratio of nonlinear
dimensionless frequency to the linear one by increasing Aj

The dependency of 4, (see Eq. (9¢)) to the ratio of tension
stiffness to flexural stiffness (i.e. A/ D_) shows that an
increase in the index of power-law Teads to increasing the
ratio of the nonlinear to the linear dimensionless frequencres
as a result of increasing the ratio of 4_/D_ due to increasing
the volume fraction of stiffer material. On the other hand, the
value of A, (see Eq. (9¢)) has an inverse relatlonshlp with
L therefore it is expected to observe increasing the ratio of
the nonlinear dimensionless frequency to linear one with a
decrease in the length of nanobeam.

The variation of the ratio of the first nonlinear dimensionless
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frequencies to the first linear ones with the maximum lateral
initial dimensionless deflection is shown in Fig. 2. In this
Figure, the initial dimensionless deflection is represented by
V(x,0=4 W, The influence of the ratio of the thermal load
to critical one, small scale parameter value, index of power-
law and the ratio of length to thickness on the ratio of the
first nonlinear dimensionless frequency to the first linear one
is indicated in Fig. 2 as well. Fig. 2 clearly reveals that the
difference between first nonlinear and linear dimensionless
frequency increases with a rise in the maximum lateral initial
dimensionless deflection, small scale parameter value, and
index of power law, although by increasing compressive axial
load, the first nonlinear dimensionless frequency becomes
close to the linear one (Fig. 3).

The comparison between Figs. 2 (a) and 2 (c) (Fig. 2 (b) and 2
(d)) shows that regardless of the value of axial force (index of
power law), with a decrease in the ratio of length to thickness,
the effects of small scale parameter value on the ratio of the
first nonlinear dimensionless frequency to the first linear one
increase.

Fig. 3 clearly reveals that with an increase in small scale
parameter value and/or a decrease in index of power law
(i.e. an increase in the volume fraction of softer material),
load bearing capacity of FG nanobeam decreases. It is also
concluded that at the fixed value of compressive axial load,
the ratio of the nonlinear to linear dimensionless frequencies
increases with a decrease in small scale parameter value and/
or a rise in index of power law.
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Fig. 2. The effect of initial deflection (V(x,0)=A4,y,) on the ratio of the first nonlinear dimensionless frequency to the first linear one
with an increase in a, c) axial load; b, d) index of power law

L/h=50,A1=3.3
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===e0a=1
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0.

2 0.8
Fig. 3. The effects of compressive axial thermal load

(NT > NT, for each case) on the ratio of the nonlinear to linear

dimensionless frequencies

Fig. 3 represents that a nanobeam with a smaller value of
small scale parameter experiences the static instability later
than a nanobeam with a larger one. Then, the maximum
deflection of a nanobeam under a fixed compressive axial

load at postbuckling configuration rises as the value of small
scale parameter increases. As a result, the value of K (Eq.
RN . . . J

(9¢), when i=j) rises due to the direct proportionality between
K, and WA which leads to increasing the natural dimensionless
frequencies of buckled nanobeams that may explain the
reason of decreasing the ratio of the nonlinear to linear
dimensionless frequencies with an increase in the small scale
parameter value in a fixed value of compressive thermal load.
According to Fig. 4, one can deduce that the ratio of length
to thickness can affect the ratio of the frequencies obtained
based on nonlocal continuum mechanics significantly. If the
small scale parameter tends to zero and/or the aspect ratio
increases, the influence of the ratio of length to thickness
on the variance between nonlinear and linear dimensionless
frequencies will decrease. As it is shown, the ratio of the
length to thickness has no effect on the ratio of classical
nonlinear dimensionless frequencies to classical linear ones
because the classical involved parameters (see Egs. (9b),
(9¢) and (9a) when e ,a=0) are independent on the length of
nanobeam.

Based on initial deflection expressed as V(x,0)=4,y,, the
impacts of small scale parameter and aspect ratio combined
with initial dimensionless deflection (Table 3), index of
power law (Table 4), and compressive axial force (Table 5) on
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Fig. 4. The effect of aspect ratio on the ratio of nonlinear to

linear dimensionless frequencies

the second nonlinear dimensionless frequency to the second
linear one of FG nanobeams are listed in Tables 3 to 5. As it
is expected, the values of aspect ratio do not affect the second
classical nonlinear to linear dimensionless frequencies ratio
(i.e. eja = 0) regardless of the initial dimensionless deflection
of nanobeam, material compositions and axial force. If the
small scale parameter value rises, the influence of aspect ratio
on the second nonlinear to linear dimensionless frequencies
ratio will be seen. With an increase in the initial deflection of
FG nanobeam, index of power law, and small scale parameter
value, the difference between the second nonlinear and linear
dimensionless frequencies increases, although a rise in aspect
ratio decreases the difference between the second nonclassical
nonlinear and linear dimensionless frequencies. According to
Table 5, a rise in axial compressive force which is beyond the
load bearing capacity of FG nanobeam has no effect on the
nonlinear to linear dimensionless frequency ratio.

Fig. 5 shows how the number of linear mode shapes used
to estimate lateral dimensionless deflection of vibrating FG

Table 3. The variation of the ratio of the second nonlinear dimensionless frequency to the second linear one with the initial deflection.
Initial dimensionless deflection is expressed as V(x,0)=A,y,,n =0, N, /N, =1.01

A,=0.834 A,=1.67 A =25

e,a=0 e,a=1 e,a=2 e,a=0 e,a=1 e,a=2 e,a=0 e,a=1 e,a=2
L/h=30 1.033 1.037 1.052 1.126 1.143 1.197 1.266 1.3 1.4
L/h=40 1.033 1.035 1.043 1.126 1.135 1.165 1.266 1.285 1.343
L/h=50 1.033 1.034 1.039 1.126 1.132 1.150 1.266 1.278 1.315
L/h=60 1.033 1.034 1.037 1.126 1.130 1.143 1.266 1.275 1.300
L/h=170 1.033 1.033 1.036 1.126 1.129 1.138 1.266 1.272 1.291
L/h=80 1.033 1.033 1.035 1.126 1.128 1.135 1.266 1.271 1.285

Table 4. The variation of the ratio of the second nonlinear dimensionless frequency to the second linear one with index of power law.
Initial dimensionless deflection is expressed as V(x,0)=4,y,, 4, =2.5, N, /N, =1.01

n=0 n=0.3 n=0.6

e,a=0 e,a=1 e,a=2 e,a=0 e,a=1 e,a=2 e,a=0 e,a=1 e,a=2
L/h=30 1.266 1.300 1.406 1.330 1.371 1.498 1.401 1.449 1.599
L/h=40 1.266 1.285 1.343 1.330 1.353 1.423 1.401 1.428 1.510
L/h=50 1.266 1.278 1.315 1.330 1.345 1.389 1.401 1.418 1.470
L/h=60 1.266 1.275 1.300 1.330 1.340 1.371 1.401 1.413 1.449
L/h=T70 1.266 1.272 1.291 1.330 1.338 1.360 1.401 1.410 1.436
L/h=80 1.266 1.271 1.285 1.330 1.336 1.353 1.401 1.408 1.428

Table 5. The variation of the ratio of the second nonlinear dimensionless frequency to the second linear one with axial load. Initial
dimensionless deflection is expressed as V(x,0)=4,y,, 4, =2.5,n=0

N,/N, =1.01

N,/N,,=1.1

N,/N, =15

e,a=0 e,a=1 e,a=2 e,a=0 e,a=1 e,a=2 e,a=0 e,a=1 e,a=2
L/h=30 1.266 1.300 1.406 1.266 1.300 1.406 1.266 1.300 1.406
L/h=40 1.266 1.285 1.343 1.266 1.285 1.343 1.266 1.285 1.343
L/h=50 1.266 1.278 1.315 1.266 1.278 1.315 1.266 1.278 1.315
L/h=60 1.266 1.275 1.300 1.266 1.275 1.300 1.266 1.275 1.300
L/h=70 1.266 1.272 1.291 1.266 1.272 1.291 1.266 1.272 1.291
L/h=80 1.266 1.271 1.285 1.266 1.271 1.285 1.266 1.271 1.285
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Fig. 5. Phase plane of vibrating FG nanobeam around the first buckling mode.

nanobeam around the first buckling configuration affects the
estimation of lateral vibration of FG nanobeam. It is assumed
that the initial deflection is expressed as V(x,0)=A4,y,. The
gray and the black lines introduce the phase planes estimated
by the first linear mode shape and the first eight linear
eigenmodes of vibrating FG nanobeam respectively. As it
is seen, although the value of small scale parameter, index
of power law and aspect ratio impact on the phase plane
estimated by the first eight linear eigenmode of vibrating FG
nanobeam, the greatest difference between two estimations
made by the first eigen-mode and the first eight eigenmodes
belongs to the velocity of lateral vibration of buckled FG
nanobeam.

The impact of initial deflection upon estimating nonlinear
dimensionless frequencies is also investigated. Fig. 6
illustrates the variation of the first two nonlinear to linear
dimensionless frequency of buckled FG nanobeams excited
by two different initial dimensionless deflection represented
by V(x,0)=4,y, and V(x,0)=A,, respectively. It is clearly seen
that the difference between the first nonlinear dimensionless
frequency and the first linear one will be more if the initial
dimensionless deflection of FG nanobeam is similar to the
first linear eigenmode of FG nanobeam. Similar conclusion
can be obtained when the variance between second nonlinear

and linear frequency is investigated.

7- Conclusions

This study aims at investigating the nonlinear free vibration
of thermally buckled functionally graded nanobeam. It is
assumed that material properties are gradually graded in
thickness direction. Nonlocal nonlinear Euler-Bernoulli
beam theory is used to derive nonlocal governing equation
of motion. Linear eigen-modes of FG nanobeam vibrating
around the first buckling configuration are employed to
change partial differential equation of motion to a system
of ordinary differential equations which is solved based
on homotopy perturbation method and variational iteration
method. The obtained formula that governs the nonlinear
frequencies clearly states that initial lateral deformation
(V(x,0)) significantly affects nonlinear frequency and lateral
response of buckled FG nanobeam. Results show that the
difference between nonlinear and linear frequency increases
with a rise in the maximum lateral initial deflection, small
scale parameter value, and index of power law. Investigating
the effect of the ratio of length to thickness on variance
between nonlinear and linear dimensionless frequencies
shows that aspect ratio has no effect on difference on the ratio
of the classical nonlinear to linear dimensionless frequencies,
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Fig. 6. The impact of initial deflection upon estimating nonlinear frequencies

although the difference between nonlocal nonlinear and
linear dimensionless frequencies decreases with a rise in
aspect ratio. In contrast to the ratio of the first nonlinear
dimensionless frequency to the first linear one which will
decrease if compressive axial load increases, the values of
compressive axial load which are beyond the load bearing
capacity of FG nanobeam do not affect the ratio of the second
nonlinear dimensionless frequency to the second linear one.
It is also concluded that the difference between the first
(second) nonlinear dimensionless frequency and the first
(second) linear one will be more if the initial deflection of FG
nanobeam is similar to the first (second) linear eigen-mode
of FG nanobeam. The results also show how the number
of linear mode shape used to estimate the lateral deflection
of vibrating FG nanobeam around the first buckling
configuration affects the estimation of the lateral vibration of
buckled FG nanobeam.

Appendix A

Based on Euler-Bernoulli theory together with von-Karman
geometrical nonlinearity in conjunction with nonlocal
elasticity theory, one can obtain the governing equation of
nonlinear free lateral vibration of FG nanobeams (see Fig. Al
for geometrical details) under pre compressive axial thermal
force as:

L
2 A (oW 4W ow
- - dx +N;
(eo) =557 0[ ox j Vot T
2 2
_[ j[aWj e - JWZ (A1)
ox ox
ow ow
+D +7 =0
> ot 0 e

where z, is the distance of the neutral surface of the FG
nanobeam from the mid-plane of the FG nanobeam. Also,
W=W(x,?) is the transverse displacement of any point on the
mid-plane of beam element. 4=(bx%h) represents the cross
section area of nanobeam. p(z) , E(z) , and o(z) are mass
density, Young modulus and coefficient of thermal expansion
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Fig. Al. Geometrical details of FG nanobeam under
consideration

respectively which are functionally graded in the thickness
direction (Egs. (2¢) to (2e)). The thermal load is shown by
N,. A _and D_ denote the flexural stiffness and the tensile
stlffness respectlvely (see Egs. (2a) and (2b)). / is defined by
the second part of Eq. (2b).. Also, the small scale parameter
is shown by e a.

The following dimensionless variables can be defined to
simplify the parametric studies [22]:

_ W _ D
:W =—.,t =t ~ 5
L AL“ (A2

where L and r are the length of the nanobeam and the gyration
radius of the cross section of the beam, respectively.
Then Eq. (A1) can be rewritten as:

4 4
Z:I: ((eoa N /D )5:12+
((epa)* 4,2 /2DXXL2)( jo(aW Jox )’ dfj ‘Z;”j +
ow
((NTLZ/Dxx)f(Aer/ZDm)I (oW Jox ) d jafz
o (ew) oW |_
ot L* ortox?

If the inertia effects are eliminated from Eq. (A3), one can
find the governing equation of buckling behavior of FG

(A3)
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Fig. A2. Buckling configuration (first mode) as well as dynamic
disturbance (first mode)

nanobeams as:

2 2 — \2 _
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in which WS(Y) is buckling configuration of nanobeam, which
dynamic disturbance (¥( 7, x )) occurs around (for example,
see Fig. A2).

Substituting W=W (x)+V( 7, X ) (see Fig. A2) into Eq. (A1),
the nonlinear vibration of buckled nanobeam is obtained as:
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According to Eq. (A4), the summation of the last two terms of
Eq. (AS) is equal to zero. Then Eq. (A5) can be rewritten as:
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Eq. (A6) is known as nonlinear vibration equation of buckled
nanobeam.

Appendix B

Dropping the quadratic and cubic nonlinear terms from Eq.
(A6), the linear vibration of thermally buckled FG nanobeams
can be obtained as [22]:
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+
D L* Jooxr or ox*
2 2 Y 2
. NyL° A,r J‘l ow . oV (B1)
D, 2D, ox ox?
A,.r? IlaWS ov ,_\ow, oV
- — de ——
D, Jo ox ox x* o’
_(eoa)2 84V =0
L* ox’tor?

e?g(x) for V( 7, X ) can be substituted in Eq. (B1) due to
its linear nature and ordinary differential equation governing
mode shape of linear vibration (4(X)) can be obtained as
follows:

where @= wVI L? /Dxx is dimensionless natural frequency of
buckled beam and [22]
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(N;22/D, )~ (4,2 /2D,. ) I;(avﬂ Jex ) de

“ 1=((ea)! Ny /D, )+ (et Aoor? 20, 2 [ (007, Jox ) .
A (et ¥ /D)(((;A/L/;)L) J (07, jox ) a =
T e o )+((ei; A/D/EDL) flemeryar B
Ao 1((ea) Ny /D, )+(<eo(j::i/riz/)zm2) [\(e jaxy ac 0
4= w (B7)

1=((eoa N7 /., )+ ((ega) Aper? /2D”L2)‘[;(an7x Jox ) dx

Based on the Polynomial-based Differential Quadrature
method (PDQ) [47], a non-uniform mesh can be used to
divide computational domain 0 <X < 1 into (N-1) intervals.
The mesh points are placed at the shifted Chebyshev-Gauss-
Lobatto points [48],

%; =0.5[1-cos(7 (i =1)/N =1) ], i =1,2,...N (B8)

Quan and Chang’s Approach [47] is used to compute
weighting coefficients for the first order derivative (d¢/dx)(X)
at any grid point as

do , _ < _ do
E(xi)zgaijgo(xi), or {di}=A{§0} (B9)
where
. 1 N fi _7k . .
G = X, X, kzl,l;[;ti,j X, -x, li] (B10)

(B11)

To implement boundary conditions, the modification of the
weighting coefficient matrices method [47, 48] is employed.
According to this method, the first and the last rows of
the matrix A=[a,] must be replaced with zero to satisfy
derivative conditions (dp/dx|x=0 and d¢/dx|x=1). The new
matrix is named A. Using A and A, higher order derivatives
are defined as follows [47]:
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{?}:Az&{q)}, or {”Qf}:ﬁ{qo} B12)
{jﬁj’} (AA)Bo, or{ 43’}_1){ | (B13)

Substituting Eqs. (B8) to (B13) and post-buckling
configuration (Eq. (4) into Eq. (B2) and applying the
remainder of the boundary conditions (¢(0)=0 and ¢(1)=0),
the following discretized equation can be obtained as:

[N l(d +ﬂ-()by +ql/) ] Z{N 1( ..—ﬂgb;/,)¢j] (B14)

Jj=2 Jj=2

where bj d , and (5 are the components of B, D and Kronecker
delta respectively and

5 —

daw.,  _
~(A+2m)=-(5)S, (B15)
X
where
N-1 d2V17S L dZW 3 fi+ _fi
S/ :;[ dfo (xi)aij' d* ( I+l)a(i+1)j]12 (BIS)

By solving the eigen-frequency equation (Eq. (B14)), one can
obtain the dimensionless linear frequencies of buckled beam
(@w?) as well as corresponding mode shapes (y={0, ¢, 0}).
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