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The details for the calculation of the parameters for other 
surfaces in Fig. 5 have been described in Ref. [37]. 
The Eshelby tensor is shown as:

(23)

Finally, all parameters for the cuboidal inhomogeneity are 
substituted into Eq. (6). In our problem, numerical values of 
the cuboidal inhomogeneity with dimensions b1=b2=b3=1 are  
calculated as:

(24)

4- 4- Calculation of the total strain for the inhomogeneity 
problem
In EIM, equivalent eigenstrain εij

* is defined as [35]:

* ´́
ij ijkl ijS e�H � (25)

where eij
´´ is the uniform initial eigenstrain which is due to 

the difference in temperature and materials and is defined by:

�� ��´́
ij Al SiC ije T� D � D � G�  � � � ' (26)

where αAl and αSiC are thermal expansion coefficients of 
the aluminum and the SiC, respectively. δij is Kronecker 
delta and ∆T is the temperature difference. The thermal 
expansion coefficients of the aluminum and the SiC are                        
αAl=23.6×10-6/℃  and αSiC=4×10-6/℃, respectively, and ∆T 
is the temperature difference between the melting point of 
the aluminum to environmental temperature (i.e. ∆T=660.32-
25=635.32 ℃. Then Eq. (26) is calculated by:

�� �� �� ��´́ 312.452 10ij Al SiC ij ije T� D � D � G � G���  � � � ' �  � u (27)

The equivalent eigenstrain εij
* is obtained by Eq. (25). All 

elements of the initial eigenstrain εij
p are considered zero 

expect ε11
p=0.01,ε22

p==0.01,ε33
p==0.01, and the total strain is 

obtained by Eq. (3).

5- Results and Discussion
For the purpose of the model validation, the results of the 
inclusion problem are compared to the available results 
by Nozaki and Taya [22]. Fig. 7 shows the results are in a 
good agreement. Figs. 8 and 9 depict the distribution of the 
dimensionless stress (σ11 ⁄E) for the inclusion problem and 
the inhomogeneity problem along the dimensionless position 
(x1 ⁄b1), respectively. According to results presented in Figs. 
8 and 9, the variation of (σ11 ⁄E), for the inclusion and the 
inhomogeneity problem along the axis (x1 ⁄b1), inside of the 
inclusion is negative (compression). The variations of (σ11 ⁄E), 
for the inclusion and the inhomogeneity problem along the 
axis (x1 ⁄b1), at interface of the inclusion and the inhomogeneity 
is continuous. Stress outside of the interface for the inclusion 
tends to be zero. By eliminating the eigenstrain in the 
inhomogeneity problem, the results of the inclusion problem 
are obtained. Thus, the results for the inhomogeneity problem 
are consistent to the inclusion problem.
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Fig. 7. Comparison of dimensionless stress σ11 ⁄E for the 
inclusion problem with respect to the dimensionless points 

x2  ⁄ b2  with Nozaki and Taya results [22]

Fig. 8. Distribution of σ11 ⁄E for the inclusion problem along the 
dimensionless position x1  ⁄ b1 
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Figs. 10 and 11 show the distribution of the dimensionless 
stress (σ11 ⁄E), for the inclusion problem and the 
inhomogeneity problem along the dimensionless position                                                     
(x2  ⁄b2), respectively. According to Figs. 10 and 11, the 
variation of (σ11 ⁄E), for the inclusion and the inhomogeneity 
problems along the axis (x2  ⁄b2), inside of the inclusion is 
compressive. The variations of (σ11 ⁄E), for the inclusion 
and the inhomogeneity along the axis (x2  ⁄b2), at interface of 
the inclusion and the inhomogeneity is discontinuous. The 
variations of the stress at the outside of the interface for the 
inclusion tend to be zero.

Figs. 12 and 13 show the distribution of the dimensionless 
stress (σ11 ⁄E), for the inclusion and the inhomogeneity 
problems along the dimensionless position (x3  ⁄b3) , 
respectively.”. According to Figs. 12 and 13, the variation 
of (σ11 ⁄E), for the inclusion and the inhomogeneity problems 
along the axis (x3 ⁄b3) is similar to the variation of (σ11 ⁄E) for 
the inclusion and the inhomogeneity problems along the axis 
(x2  ⁄b2).

Figs. 14 to 19 depict the distribution of the strains for the 
inclusion and the inhomogeneity problems along the 
dimensionless axes, respectively. Results show that the 
distributions of the strains at the interface are discontinuous. 
Fig. 14 shows that inside the inclusion, the strain ε11 is 
compressive. Although, around the interface of the inclusion, 
the strain distribution changes from positive (tension) 
to negative (compression). Fig. 15 shows inside and the 
outside of the inhomogeneity, the strain ε11 is compressive. 
According to Fig. 16, inside  the inclusion, the strain ε11 is 
compressive and  outside  the inclusion is tensile. Fig. 17 
shows the strain distribution in the inside and the outside 
of the inhomogeneity is compressive. According to Figs. 18 
and 19, the variation of the strain ε11 for the inclusion and the 
inhomogeneity problems along the dimensionless position                                                                                            
x3 /b3 is similar to the variation of  the strain ε11 for the inclusion 
and the inhomogeneity problems along the dimensionless 
position x2 /b2, respectively. Totally, the stress and the strain 
distributions along the same axes for the inclusion and 
the inhomogeneity problems have the same trend but the 
stress and the strain in the inclusion problem is less than 
the inhomogeneity problem due to the difference between 

Fig. 9. Distribution of σ11 ⁄E for the inhomogeneity problem 
along the dimensionless position x1  ⁄ b1

Fig. 10. Distribution of σ11 ⁄E for the inclusion problem along 
the dimensionless position x2  ⁄ b2

Fig. 11. Distribution of σ11 ⁄E for the inhomogeneity problem 
along the dimensionless position x2  ⁄ b2

Fig. 12. Distribution of σ11 ⁄E for the inclusion problem along 
the dimensionless position x3  ⁄ b3

Fig. 13. Distribution of σ11 ⁄E for the inhomogeneity problem 
along the dimensionless position x3  ⁄ b3
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properties of reinforcement and matrix materials.

6- Conclusion
The linear elastic behavior of the aluminum matrix reinforced 
with the SiC nanoparticles was analyzed. Two representative 
volume elements for the nanocomposite were considered, 
one for the cuboidal inclusion and the other for the cuboidal 
inhomogeneity. The stress and the strain distributions were 
found for the inclusion problem by the Galerkin vector 
method, and for the inhomogeneity problem by the equivalent 
inclusion method (EIM). The major outcomes of this study 
were:
• The variations of the dimensionless stress (σ11 ⁄ E) for 

the inclusion and inhomogeneity problems along the 
dimensionless position (x1 ⁄ b1), at the interface of the 
inclusion and the inhomogeneity was, continuous.

• The variations of the dimensionless stress (σ11 ⁄ E) for 
the inclusion and the inhomogeneity problems along the 
dimensionless position (x2  ⁄ b2), at the interface of the 
inclusion and the inhomogeneity was, discontinuous.

• The distributions of the strains at the interface of the 
inclusion and the inhomogeneity were discontinuous.

• The stresses and strains distributions along the same 
axes for the inclusion and the inhomogeneity problems 
had the  same trend but the stresses and strains in the 
inclusion problem were  less than the inhomogeneity 
problem due to the differenece between mechanical 
properties of matrix and reinforcement materials.

Fig. 14. Distribution of strain ε11 for the inclusion problem 
along the dimensionless position x1  ⁄ b2

Fig. 15. Distribution of strain ε11 for the inhomogeneity problem 
along the dimensionless position x1  ⁄ b2

Fig. 16. Distribution of strain ε11 for the inclusion problem 
along the dimensionless position x2  ⁄ b2

Fig. 17. Distribution of strain ε11 for the inhomogeneity problem 
along the dimensionless position x2  ⁄ b2

Fig. 18. Distribution of strain ε11 for the inclusion problem 
along the dimensionless position x3  ⁄ b3

Fig. 19. Distribution of strain ε11 for the inhomogeneity problem 
along the dimensionless position x3  ⁄ b3
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